File size: 68,218 Bytes
9e49e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 |
{
"cells": [
{
"cell_type": "markdown",
"id": "75b58048-7d14-4fc6-8085-1fc08c81b4a6",
"metadata": {
"id": "75b58048-7d14-4fc6-8085-1fc08c81b4a6"
},
"source": [
"# Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers"
]
},
{
"cell_type": "markdown",
"id": "fbfa8ad5-4cdc-4512-9058-836cbbf65e1a",
"metadata": {
"id": "fbfa8ad5-4cdc-4512-9058-836cbbf65e1a"
},
"source": [
"In this Colab, we present a step-by-step guide on how to fine-tune Whisper \n",
"for any multilingual ASR dataset using Hugging Face 🤗 Transformers. This is a \n",
"more \"hands-on\" version of the accompanying [blog post](https://huggingface.co/blog/fine-tune-whisper). \n",
"For a more in-depth explanation of Whisper, the Common Voice dataset and the theory behind fine-tuning, the reader is advised to refer to the blog post."
]
},
{
"cell_type": "markdown",
"id": "afe0d503-ae4e-4aa7-9af4-dbcba52db41e",
"metadata": {
"id": "afe0d503-ae4e-4aa7-9af4-dbcba52db41e"
},
"source": [
"## Introduction"
]
},
{
"cell_type": "markdown",
"id": "9ae91ed4-9c3e-4ade-938e-f4c2dcfbfdc0",
"metadata": {
"id": "9ae91ed4-9c3e-4ade-938e-f4c2dcfbfdc0"
},
"source": [
"Whisper is a pre-trained model for automatic speech recognition (ASR) \n",
"published in [September 2022](https://openai.com/blog/whisper/) by the authors \n",
"Alec Radford et al. from OpenAI. Unlike many of its predecessors, such as \n",
"[Wav2Vec 2.0](https://arxiv.org/abs/2006.11477), which are pre-trained \n",
"on un-labelled audio data, Whisper is pre-trained on a vast quantity of \n",
"**labelled** audio-transcription data, 680,000 hours to be precise. \n",
"This is an order of magnitude more data than the un-labelled audio data used \n",
"to train Wav2Vec 2.0 (60,000 hours). What is more, 117,000 hours of this \n",
"pre-training data is multilingual ASR data. This results in checkpoints \n",
"that can be applied to over 96 languages, many of which are considered \n",
"_low-resource_.\n",
"\n",
"When scaled to 680,000 hours of labelled pre-training data, Whisper models \n",
"demonstrate a strong ability to generalise to many datasets and domains.\n",
"The pre-trained checkpoints achieve competitive results to state-of-the-art \n",
"ASR systems, with near 3% word error rate (WER) on the test-clean subset of \n",
"LibriSpeech ASR and a new state-of-the-art on TED-LIUM with 4.7% WER (_c.f._ \n",
"Table 8 of the [Whisper paper](https://cdn.openai.com/papers/whisper.pdf)).\n",
"The extensive multilingual ASR knowledge acquired by Whisper during pre-training \n",
"can be leveraged for other low-resource languages; through fine-tuning, the \n",
"pre-trained checkpoints can be adapted for specific datasets and languages \n",
"to further improve upon these results. We'll show just how Whisper can be fine-tuned \n",
"for low-resource languages in this Colab."
]
},
{
"cell_type": "markdown",
"id": "e59b91d6-be24-4b5e-bb38-4977ea143a72",
"metadata": {
"id": "e59b91d6-be24-4b5e-bb38-4977ea143a72"
},
"source": [
"<figure>\n",
"<img src=\"https://raw.githubusercontent.com/sanchit-gandhi/notebooks/main/whisper_architecture.svg\" alt=\"Trulli\" style=\"width:100%\">\n",
"<figcaption align = \"center\"><b>Figure 1:</b> Whisper model. The architecture \n",
"follows the standard Transformer-based encoder-decoder model. A \n",
"log-Mel spectrogram is input to the encoder. The last encoder \n",
"hidden states are input to the decoder via cross-attention mechanisms. The \n",
"decoder autoregressively predicts text tokens, jointly conditional on the \n",
"encoder hidden states and previously predicted tokens. Figure source: \n",
"<a href=\"https://openai.com/blog/whisper/\">OpenAI Whisper Blog</a>.</figcaption>\n",
"</figure>"
]
},
{
"cell_type": "markdown",
"id": "21b6316e-8a55-4549-a154-66d3da2ab74a",
"metadata": {
"id": "21b6316e-8a55-4549-a154-66d3da2ab74a"
},
"source": [
"The Whisper checkpoints come in five configurations of varying model sizes.\n",
"The smallest four are trained on either English-only or multilingual data.\n",
"The largest checkpoint is multilingual only. All nine of the pre-trained checkpoints \n",
"are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The \n",
"checkpoints are summarised in the following table with links to the models on the Hub:\n",
"\n",
"| Size | Layers | Width | Heads | Parameters | English-only | Multilingual |\n",
"|--------|--------|-------|-------|------------|------------------------------------------------------|---------------------------------------------------|\n",
"| tiny | 4 | 384 | 6 | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny.) |\n",
"| base | 6 | 512 | 8 | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |\n",
"| small | 12 | 768 | 12 | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |\n",
"| medium | 24 | 1024 | 16 | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |\n",
"| large | 32 | 1280 | 20 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |\n",
"\n",
"For demonstration purposes, we'll fine-tune the multilingual version of the \n",
"[`\"small\"`](https://huggingface.co/openai/whisper-small) checkpoint with 244M params (~= 1GB). \n",
"As for our data, we'll train and evaluate our system on a low-resource language \n",
"taken from the [Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0)\n",
"dataset. We'll show that with as little as 8 hours of fine-tuning data, we can achieve \n",
"strong performance in this language."
]
},
{
"cell_type": "markdown",
"id": "3a680dfc-cbba-4f6c-8a1f-e1a5ff3f123a",
"metadata": {
"id": "3a680dfc-cbba-4f6c-8a1f-e1a5ff3f123a"
},
"source": [
"------------------------------------------------------------------------\n",
"\n",
"\\\\({}^1\\\\) The name Whisper follows from the acronym “WSPSR”, which stands for “Web-scale Supervised Pre-training for Speech Recognition”."
]
},
{
"cell_type": "markdown",
"id": "b219c9dd-39b6-4a95-b2a1-3f547a1e7bc0",
"metadata": {
"id": "b219c9dd-39b6-4a95-b2a1-3f547a1e7bc0"
},
"source": [
"## Load Dataset"
]
},
{
"cell_type": "markdown",
"id": "674429c5-0ab4-4adf-975b-621bb69eca38",
"metadata": {
"id": "674429c5-0ab4-4adf-975b-621bb69eca38"
},
"source": [
"Using 🤗 Datasets, downloading and preparing data is extremely simple. \n",
"We can download and prepare the Common Voice splits in just one line of code. \n",
"\n",
"First, ensure you have accepted the terms of use on the Hugging Face Hub: [mozilla-foundation/common_voice_11_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). Once you have accepted the terms, you will have full access to the dataset and be able to download the data locally.\n",
"\n",
"Since Hindi is very low-resource, we'll combine the `train` and `validation` \n",
"splits to give approximately 8 hours of training data. We'll use the 4 hours \n",
"of `test` data as our held-out test set:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
"metadata": {
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset common_voice_11_0 (/home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ta/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f)\n",
"Found cached dataset common_voice_11_0 (/home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ta/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
" num_rows: 13844\n",
" })\n",
" test: Dataset({\n",
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
" num_rows: 591\n",
" })\n",
"})\n"
]
}
],
"source": [
"from datasets import load_dataset, DatasetDict\n",
"\n",
"common_voice = DatasetDict()\n",
"\n",
"common_voice[\"train\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"ta\", split=\"train[:5%]+validation\", use_auth_token=True)\n",
"common_voice[\"test\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"ta\", split=\"test[:5%]\", use_auth_token=True)\n",
"\n",
"print(common_voice)"
]
},
{
"cell_type": "markdown",
"id": "d5c7c3d6-7197-41e7-a088-49b753c1681f",
"metadata": {
"id": "d5c7c3d6-7197-41e7-a088-49b753c1681f"
},
"source": [
"Most ASR datasets only provide input audio samples (`audio`) and the \n",
"corresponding transcribed text (`sentence`). Common Voice contains additional \n",
"metadata information, such as `accent` and `locale`, which we can disregard for ASR.\n",
"Keeping the notebook as general as possible, we only consider the input audio and\n",
"transcribed text for fine-tuning, discarding the additional metadata information:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "20ba635d-518c-47ac-97ee-3cad25f1e0ce",
"metadata": {
"id": "20ba635d-518c-47ac-97ee-3cad25f1e0ce"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['audio', 'sentence'],\n",
" num_rows: 13844\n",
" })\n",
" test: Dataset({\n",
" features: ['audio', 'sentence'],\n",
" num_rows: 591\n",
" })\n",
"})\n"
]
}
],
"source": [
"common_voice = common_voice.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"path\", \"segment\", \"up_votes\"])\n",
"\n",
"print(common_voice)"
]
},
{
"cell_type": "markdown",
"id": "2d63b2d2-f68a-4d74-b7f1-5127f6d16605",
"metadata": {
"id": "2d63b2d2-f68a-4d74-b7f1-5127f6d16605"
},
"source": [
"## Prepare Feature Extractor, Tokenizer and Data"
]
},
{
"cell_type": "markdown",
"id": "601c3099-1026-439e-93e2-5635b3ba5a73",
"metadata": {
"id": "601c3099-1026-439e-93e2-5635b3ba5a73"
},
"source": [
"The ASR pipeline can be de-composed into three stages: \n",
"1) A feature extractor which pre-processes the raw audio-inputs\n",
"2) The model which performs the sequence-to-sequence mapping \n",
"3) A tokenizer which post-processes the model outputs to text format\n",
"\n",
"In 🤗 Transformers, the Whisper model has an associated feature extractor and tokenizer, \n",
"called [WhisperFeatureExtractor](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperFeatureExtractor)\n",
"and [WhisperTokenizer](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperTokenizer) \n",
"respectively.\n",
"\n",
"We'll go through details for setting-up the feature extractor and tokenizer one-by-one!"
]
},
{
"cell_type": "markdown",
"id": "560332eb-3558-41a1-b500-e83a9f695f84",
"metadata": {
"id": "560332eb-3558-41a1-b500-e83a9f695f84"
},
"source": [
"### Load WhisperFeatureExtractor"
]
},
{
"cell_type": "markdown",
"id": "32ec8068-0bd7-412d-b662-0edb9d1e7365",
"metadata": {
"id": "32ec8068-0bd7-412d-b662-0edb9d1e7365"
},
"source": [
"The Whisper feature extractor performs two operations:\n",
"1. Pads / truncates the audio inputs to 30s: any audio inputs shorter than 30s are padded to 30s with silence (zeros), and those longer that 30s are truncated to 30s\n",
"2. Converts the audio inputs to _log-Mel spectrogram_ input features, a visual representation of the audio and the form of the input expected by the Whisper model"
]
},
{
"cell_type": "markdown",
"id": "589d9ec1-d12b-4b64-93f7-04c63997da19",
"metadata": {
"id": "589d9ec1-d12b-4b64-93f7-04c63997da19"
},
"source": [
"<figure>\n",
"<img src=\"https://raw.githubusercontent.com/sanchit-gandhi/notebooks/main/spectrogram.jpg\" alt=\"Trulli\" style=\"width:100%\">\n",
"<figcaption align = \"center\"><b>Figure 2:</b> Conversion of sampled audio array to log-Mel spectrogram.\n",
"Left: sampled 1-dimensional audio signal. Right: corresponding log-Mel spectrogram. Figure source:\n",
"<a href=\"https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html\">Google SpecAugment Blog</a>.\n",
"</figcaption>"
]
},
{
"cell_type": "markdown",
"id": "b2ef54d5-b946-4c1d-9fdc-adc5d01b46aa",
"metadata": {
"id": "b2ef54d5-b946-4c1d-9fdc-adc5d01b46aa"
},
"source": [
"We'll load the feature extractor from the pre-trained checkpoint with the default values:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "bc77d7bb-f9e2-47f5-b663-30f7a4321ce5",
"metadata": {
"id": "bc77d7bb-f9e2-47f5-b663-30f7a4321ce5"
},
"outputs": [],
"source": [
"from transformers import WhisperFeatureExtractor\n",
"\n",
"feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-medium\")"
]
},
{
"cell_type": "markdown",
"id": "93748af7-b917-4ecf-a0c8-7d89077ff9cb",
"metadata": {
"id": "93748af7-b917-4ecf-a0c8-7d89077ff9cb"
},
"source": [
"### Load WhisperTokenizer"
]
},
{
"cell_type": "markdown",
"id": "2bc82609-a9fb-447a-a2af-99597c864029",
"metadata": {
"id": "2bc82609-a9fb-447a-a2af-99597c864029"
},
"source": [
"The Whisper model outputs a sequence of _token ids_. The tokenizer maps each of these token ids to their corresponding text string. For Hindi, we can load the pre-trained tokenizer and use it for fine-tuning without any further modifications. We simply have to \n",
"specify the target language and the task. These arguments inform the \n",
"tokenizer to prefix the language and task tokens to the start of encoded \n",
"label sequences:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c7b07f9b-ae0e-4f89-98f0-0c50d432eab6",
"metadata": {
"id": "c7b07f9b-ae0e-4f89-98f0-0c50d432eab6",
"outputId": "5c004b44-86e7-4e00-88be-39e0af5eed69"
},
"outputs": [],
"source": [
"from transformers import WhisperTokenizer\n",
"\n",
"tokenizer = WhisperTokenizer.from_pretrained(\"openai/whisper-medium\", language=\"Tamil\", task=\"transcribe\")"
]
},
{
"cell_type": "markdown",
"id": "d2ef23f3-f4a8-483a-a2dc-080a7496cb1b",
"metadata": {
"id": "d2ef23f3-f4a8-483a-a2dc-080a7496cb1b"
},
"source": [
"### Combine To Create A WhisperProcessor"
]
},
{
"cell_type": "markdown",
"id": "5ff67654-5a29-4bb8-a69d-0228946c6f8d",
"metadata": {
"id": "5ff67654-5a29-4bb8-a69d-0228946c6f8d"
},
"source": [
"To simplify using the feature extractor and tokenizer, we can _wrap_ \n",
"both into a single `WhisperProcessor` class. This processor object \n",
"inherits from the `WhisperFeatureExtractor` and `WhisperProcessor`, \n",
"and can be used on the audio inputs and model predictions as required. \n",
"In doing so, we only need to keep track of two objects during training: \n",
"the `processor` and the `model`:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6",
"metadata": {
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6"
},
"outputs": [],
"source": [
"from transformers import WhisperProcessor\n",
"\n",
"processor = WhisperProcessor.from_pretrained(\"openai/whisper-medium\", language=\"Tamil\", task=\"transcribe\")"
]
},
{
"cell_type": "markdown",
"id": "381acd09-0b0f-4d04-9eb3-f028ac0e5f2c",
"metadata": {
"id": "381acd09-0b0f-4d04-9eb3-f028ac0e5f2c"
},
"source": [
"### Prepare Data"
]
},
{
"cell_type": "markdown",
"id": "9649bf01-2e8a-45e5-8fca-441c13637b8f",
"metadata": {
"id": "9649bf01-2e8a-45e5-8fca-441c13637b8f"
},
"source": [
"Let's print the first example of the Common Voice dataset to see \n",
"what form the data is in:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "6e6b0ec5-0c94-4e2c-ae24-c791be1b2255",
"metadata": {
"id": "6e6b0ec5-0c94-4e2c-ae24-c791be1b2255"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'audio': {'path': '/home/.cache/huggingface/datasets/downloads/extracted/9ac554f4db6808cc4578c6e0dc9e1e3e8f6d0feadca38dbc0116789d55bcfcbb/common_voice_ta_26650298.mp3', 'array': array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), 'sampling_rate': 48000}, 'sentence': 'அவரைப் பொதுமக்கள் விடாமல் பின்னாலேயே துரத்திக் கொண்டே ஓடினார்கள்.'}\n"
]
}
],
"source": [
"print(common_voice[\"train\"][0])"
]
},
{
"cell_type": "markdown",
"id": "5a679f05-063d-41b3-9b58-4fc9c6ccf4fd",
"metadata": {
"id": "5a679f05-063d-41b3-9b58-4fc9c6ccf4fd"
},
"source": [
"Since \n",
"our input audio is sampled at 48kHz, we need to _downsample_ it to \n",
"16kHz prior to passing it to the Whisper feature extractor, 16kHz being the sampling rate expected by the Whisper model. \n",
"\n",
"We'll set the audio inputs to the correct sampling rate using dataset's \n",
"[`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=cast_column#datasets.DatasetDict.cast_column)\n",
"method. This operation does not change the audio in-place, \n",
"but rather signals to `datasets` to resample audio samples _on the fly_ the \n",
"first time that they are loaded:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f12e2e57-156f-417b-8cfb-69221cc198e8",
"metadata": {
"id": "f12e2e57-156f-417b-8cfb-69221cc198e8"
},
"outputs": [],
"source": [
"from datasets import Audio\n",
"\n",
"common_voice = common_voice.cast_column(\"audio\", Audio(sampling_rate=16000))"
]
},
{
"cell_type": "markdown",
"id": "00382a3e-abec-4cdd-a54c-d1aaa3ea4707",
"metadata": {
"id": "00382a3e-abec-4cdd-a54c-d1aaa3ea4707"
},
"source": [
"Re-loading the first audio sample in the Common Voice dataset will resample \n",
"it to the desired sampling rate:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "87122d71-289a-466a-afcf-fa354b18946b",
"metadata": {
"id": "87122d71-289a-466a-afcf-fa354b18946b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'audio': {'path': '/home/.cache/huggingface/datasets/downloads/extracted/9ac554f4db6808cc4578c6e0dc9e1e3e8f6d0feadca38dbc0116789d55bcfcbb/common_voice_ta_26650298.mp3', 'array': array([0., 0., 0., ..., 0., 0., 0.], dtype=float32), 'sampling_rate': 16000}, 'sentence': 'அவரைப் பொதுமக்கள் விடாமல் பின்னாலேயே துரத்திக் கொண்டே ஓடினார்கள்.'}\n"
]
}
],
"source": [
"print(common_voice[\"train\"][0])"
]
},
{
"cell_type": "markdown",
"id": "3df7378a-a4c0-45d7-8d07-defbd1062ab6",
"metadata": {},
"source": [
"We'll define our pre-processing strategy. We advise that you **do not** lower-case the transcriptions or remove punctuation unless mixing different datasets. This will enable you to fine-tune Whisper models that can predict punctuation and casing. Later, you will see how we can evaluate the predictions without punctuation or casing, so that the models benefit from the WER improvement obtained by normalising the transcriptions while still predicting fully formatted transcriptions."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f8c4d7e6-6f51-44b0-b197-dccea8631c88",
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"import unicodedata\n",
"\n",
"import regex\n",
"\n",
"# non-ASCII letters that are not separated by \"NFKD\" normalization\n",
"ADDITIONAL_DIACRITICS = {\n",
" \"œ\": \"oe\",\n",
" \"Œ\": \"OE\",\n",
" \"ø\": \"o\",\n",
" \"Ø\": \"O\",\n",
" \"æ\": \"ae\",\n",
" \"Æ\": \"AE\",\n",
" \"ß\": \"ss\",\n",
" \"ẞ\": \"SS\",\n",
" \"đ\": \"d\",\n",
" \"Đ\": \"D\",\n",
" \"ð\": \"d\",\n",
" \"Ð\": \"D\",\n",
" \"þ\": \"th\",\n",
" \"Þ\": \"th\",\n",
" \"ł\": \"l\",\n",
" \"Ł\": \"L\",\n",
"}\n",
"\n",
"\n",
"def remove_symbols_and_diacritics(s: str, keep=\"\"):\n",
" \"\"\"\n",
" Replace any other markers, symbols, and punctuations with a space,\n",
" and drop any diacritics (category 'Mn' and some manual mappings)\n",
" \"\"\"\n",
" return \"\".join(\n",
" c\n",
" if c in keep\n",
" else ADDITIONAL_DIACRITICS[c]\n",
" if c in ADDITIONAL_DIACRITICS\n",
" else \"\"\n",
" if unicodedata.category(c) == \"Mn\"\n",
" else \" \"\n",
" if unicodedata.category(c)[0] in \"MSP\"\n",
" else c\n",
" for c in unicodedata.normalize(\"NFKD\", s)\n",
" )\n",
"\n",
"\n",
"def remove_symbols(s: str):\n",
" \"\"\"\n",
" Replace any other markers, symbols, punctuations with a space, keeping diacritics\n",
" \"\"\"\n",
" return \"\".join(\n",
" \" \" if unicodedata.category(c)[0] in \"MSP\" else c for c in unicodedata.normalize(\"NFKC\", s)\n",
" )\n",
"\n",
"\n",
"class BasicTextNormalizer:\n",
" def __init__(self, remove_diacritics: bool = False, split_letters: bool = False):\n",
" self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols\n",
" self.split_letters = split_letters\n",
"\n",
" def __call__(self, s: str):\n",
" s = s.lower()\n",
" s = re.sub(r\"[<\\[][^>\\]]*[>\\]]\", \"\", s) # remove words between brackets\n",
" s = re.sub(r\"\\(([^)]+?)\\)\", \"\", s) # remove words between parenthesis\n",
" s = self.clean(s).lower()\n",
"\n",
" if self.split_letters:\n",
" s = \" \".join(regex.findall(r\"\\X\", s, regex.U))\n",
"\n",
" s = re.sub(r\"\\s+\", \" \", s) # replace any successive whitespace characters with a space\n",
"\n",
" return s\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d041650e-1c48-4439-87b3-5b6f4a514107",
"metadata": {},
"outputs": [],
"source": [
"# from transformers.models.whisper.english_normalizer import BasicTextNormalizer\n",
"\n",
"do_lower_case = False\n",
"do_remove_punctuation = False\n",
"\n",
"normalizer = BasicTextNormalizer()"
]
},
{
"cell_type": "markdown",
"id": "89e12c2e-2f14-479b-987b-f0c75c881095",
"metadata": {},
"source": [
"Now we can write a function to prepare our data ready for the model:\n",
"1. We load and resample the audio data by calling `batch[\"audio\"]`. As explained above, 🤗 Datasets performs any necessary resampling operations on the fly.\n",
"2. We use the feature extractor to compute the log-Mel spectrogram input features from our 1-dimensional audio array.\n",
"3. We perform any optional pre-processing (lower-case or remove punctuation).\n",
"4. We encode the transcriptions to label ids through the use of the tokenizer."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c085911c-a10a-41ef-8874-306e0503e9bb",
"metadata": {},
"outputs": [],
"source": [
"def prepare_dataset(batch):\n",
" # load and (possibly) resample audio data to 16kHz\n",
" audio = batch[\"audio\"]\n",
"\n",
" # compute log-Mel input features from input audio array \n",
" batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n",
" # compute input length of audio sample in seconds\n",
" batch[\"input_length\"] = len(audio[\"array\"]) / audio[\"sampling_rate\"]\n",
" \n",
" # optional pre-processing steps\n",
" transcription = batch[\"sentence\"]\n",
" if do_lower_case:\n",
" transcription = transcription.lower()\n",
" if do_remove_punctuation:\n",
" transcription = normalizer(transcription).strip()\n",
" \n",
" # encode target text to label ids\n",
" batch[\"labels\"] = processor.tokenizer(transcription).input_ids\n",
" return batch"
]
},
{
"cell_type": "markdown",
"id": "8c960965-9fb6-466f-9dbd-c9d43e71d9d0",
"metadata": {
"id": "70b319fb-2439-4ef6-a70d-a47bf41c4a13"
},
"source": [
"We can apply the data preparation function to all of our training examples using dataset's `.map` method. The argument `num_proc` specifies how many CPU cores to use. Setting `num_proc` > 1 will enable multiprocessing. If the `.map` method hangs with multiprocessing, set `num_proc=1` and process the dataset sequentially."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "7b73ab39-ffaf-4b9e-86e5-782963c6134b",
"metadata": {
"id": "7b73ab39-ffaf-4b9e-86e5-782963c6134b"
},
"outputs": [
{
"data": {
"application/json": {
"ascii": false,
"bar_format": null,
"colour": null,
"elapsed": 0.021223068237304688,
"initial": 0,
"n": 0,
"ncols": null,
"nrows": null,
"postfix": null,
"prefix": "",
"rate": null,
"total": 13844,
"unit": "ex",
"unit_divisor": 1000,
"unit_scale": false
},
"application/vnd.jupyter.widget-view+json": {
"model_id": "3fa362fc9d394a4482a000a4c11a5970",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/13844 [00:00<?, ?ex/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/json": {
"ascii": false,
"bar_format": null,
"colour": null,
"elapsed": 0.018386363983154297,
"initial": 0,
"n": 0,
"ncols": null,
"nrows": null,
"postfix": null,
"prefix": "",
"rate": null,
"total": 591,
"unit": "ex",
"unit_divisor": 1000,
"unit_scale": false
},
"application/vnd.jupyter.widget-view+json": {
"model_id": "0bd5345430714c5a921f00ecf5ae79b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/591 [00:00<?, ?ex/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names[\"train\"], num_proc=1)"
]
},
{
"cell_type": "markdown",
"id": "54ce0fdb-7218-4a4d-b175-383980fec0df",
"metadata": {},
"source": [
"Finally, we filter any training data with audio samples longer than 30s. These samples would otherwise be truncated by the Whisper feature-extractor which could affect the stability of training. We define a function that returns `True` for samples that are less than 30s, and `False` for those that are longer:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "01cb25ef-4bb0-4325-9461-f59198acadf6",
"metadata": {},
"outputs": [],
"source": [
"max_input_length = 30.0\n",
"\n",
"def is_audio_in_length_range(length):\n",
" return length < max_input_length"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "33391c48-5b77-4d74-b4b9-efb62c1ffc91",
"metadata": {},
"outputs": [],
"source": [
"common_voice.save_to_disk(\"test.hf\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9782c3b2-172f-4c3d-8b9f-109054ff44f4",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_from_disk"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "5875baad-1946-482c-ad84-6f7683e75a13",
"metadata": {},
"outputs": [],
"source": [
"common_voice = load_from_disk(\"test.hf\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "929011bf-e4d7-4a13-881c-b9c68e85e703",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['input_features', 'input_length', 'labels'],\n",
" num_rows: 13844\n",
"})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"common_voice[\"train\"]"
]
},
{
"cell_type": "markdown",
"id": "30e676a8-7ca8-4850-8c5d-5b2b00d13fba",
"metadata": {},
"source": [
"We apply our filter function to all samples of our training dataset through 🤗 Datasets' `.filter` method:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "333f7f6e-6053-4d3b-8924-c733c79b82ac",
"metadata": {},
"outputs": [
{
"data": {
"application/json": {
"ascii": false,
"bar_format": null,
"colour": null,
"elapsed": 0.02457904815673828,
"initial": 0,
"n": 0,
"ncols": null,
"nrows": null,
"postfix": null,
"prefix": "",
"rate": null,
"total": 14,
"unit": "ba",
"unit_divisor": 1000,
"unit_scale": false
},
"application/vnd.jupyter.widget-view+json": {
"model_id": "2d776c795399476ba30d0124b3cbfb88",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/14 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"common_voice[\"train\"] = common_voice[\"train\"].filter(\n",
" is_audio_in_length_range,\n",
" input_columns=[\"input_length\"],\n",
")"
]
},
{
"cell_type": "markdown",
"id": "263a5a58-0239-4a25-b0df-c625fc9c5810",
"metadata": {
"id": "263a5a58-0239-4a25-b0df-c625fc9c5810"
},
"source": [
"## Training and Evaluation"
]
},
{
"cell_type": "markdown",
"id": "a693e768-c5a6-453f-89a1-b601dcf7daf7",
"metadata": {
"id": "a693e768-c5a6-453f-89a1-b601dcf7daf7"
},
"source": [
"Now that we've prepared our data, we're ready to dive into the training pipeline. \n",
"The [🤗 Trainer](https://huggingface.co/transformers/master/main_classes/trainer.html?highlight=trainer)\n",
"will do much of the heavy lifting for us. All we have to do is:\n",
"\n",
"- Define a data collator: the data collator takes our pre-processed data and prepares PyTorch tensors ready for the model.\n",
"\n",
"- Evaluation metrics: during evaluation, we want to evaluate the model using the [word error rate (WER)](https://huggingface.co/metrics/wer) metric. We need to define a `compute_metrics` function that handles this computation.\n",
"\n",
"- Load a pre-trained checkpoint: we need to load a pre-trained checkpoint and configure it correctly for training.\n",
"\n",
"- Define the training configuration: this will be used by the 🤗 Trainer to define the training schedule.\n",
"\n",
"Once we've fine-tuned the model, we will evaluate it on the test data to verify that we have correctly trained it \n",
"to transcribe speech in Hindi."
]
},
{
"cell_type": "markdown",
"id": "8d230e6d-624c-400a-bbf5-fa660881df25",
"metadata": {
"id": "8d230e6d-624c-400a-bbf5-fa660881df25"
},
"source": [
"### Define a Data Collator"
]
},
{
"cell_type": "markdown",
"id": "04def221-0637-4a69-b242-d3f0c1d0ee78",
"metadata": {
"id": "04def221-0637-4a69-b242-d3f0c1d0ee78"
},
"source": [
"The data collator for a sequence-to-sequence speech model is unique in the sense that it \n",
"treats the `input_features` and `labels` independently: the `input_features` must be \n",
"handled by the feature extractor and the `labels` by the tokenizer.\n",
"\n",
"The `input_features` are already padded to 30s and converted to a log-Mel spectrogram \n",
"of fixed dimension by action of the feature extractor, so all we have to do is convert the `input_features`\n",
"to batched PyTorch tensors. We do this using the feature extractor's `.pad` method with `return_tensors=pt`.\n",
"\n",
"The `labels` on the other hand are un-padded. We first pad the sequences\n",
"to the maximum length in the batch using the tokenizer's `.pad` method. The padding tokens \n",
"are then replaced by `-100` so that these tokens are **not** taken into account when \n",
"computing the loss. We then cut the BOS token from the start of the label sequence as we \n",
"append it later during training.\n",
"\n",
"We can leverage the `WhisperProcessor` we defined earlier to perform both the \n",
"feature extractor and the tokenizer operations:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5",
"metadata": {
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5"
},
"outputs": [],
"source": [
"import torch\n",
"\n",
"from dataclasses import dataclass\n",
"from typing import Any, Dict, List, Union\n",
"\n",
"@dataclass\n",
"class DataCollatorSpeechSeq2SeqWithPadding:\n",
" processor: Any\n",
"\n",
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
" # split inputs and labels since they have to be of different lengths and need different padding methods\n",
" # first treat the audio inputs by simply returning torch tensors\n",
" input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n",
" batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
"\n",
" # get the tokenized label sequences\n",
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
" # pad the labels to max length\n",
" labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
"\n",
" # replace padding with -100 to ignore loss correctly\n",
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
"\n",
" # if bos token is appended in previous tokenization step,\n",
" # cut bos token here as it's append later anyways\n",
" if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n",
" labels = labels[:, 1:]\n",
"\n",
" batch[\"labels\"] = labels\n",
"\n",
" return batch"
]
},
{
"cell_type": "markdown",
"id": "3cae7dbf-8a50-456e-a3a8-7fd005390f86",
"metadata": {
"id": "3cae7dbf-8a50-456e-a3a8-7fd005390f86"
},
"source": [
"Let's initialise the data collator we've just defined:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42",
"metadata": {
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42"
},
"outputs": [],
"source": [
"data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)"
]
},
{
"cell_type": "markdown",
"id": "d62bb2ab-750a-45e7-82e9-61d6f4805698",
"metadata": {
"id": "d62bb2ab-750a-45e7-82e9-61d6f4805698"
},
"source": [
"### Evaluation Metrics"
]
},
{
"cell_type": "markdown",
"id": "66fee1a7-a44c-461e-b047-c3917221572e",
"metadata": {
"id": "66fee1a7-a44c-461e-b047-c3917221572e"
},
"source": [
"We'll use the word error rate (WER) metric, the 'de-facto' metric for assessing \n",
"ASR systems. For more information, refer to the WER [docs](https://huggingface.co/metrics/wer). We'll load the WER metric from 🤗 Evaluate:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "b22b4011-f31f-4b57-b684-c52332f92890",
"metadata": {
"id": "b22b4011-f31f-4b57-b684-c52332f92890"
},
"outputs": [],
"source": [
"import evaluate\n",
"\n",
"metric = evaluate.load(\"wer\")"
]
},
{
"cell_type": "markdown",
"id": "4f32cab6-31f0-4cb9-af4c-40ba0f5fc508",
"metadata": {
"id": "4f32cab6-31f0-4cb9-af4c-40ba0f5fc508"
},
"source": [
"We then simply have to define a function that takes our model \n",
"predictions and returns the WER metric. This function, called\n",
"`compute_metrics`, first replaces `-100` with the `pad_token_id`\n",
"in the `label_ids` (undoing the step we applied in the \n",
"data collator to ignore padded tokens correctly in the loss).\n",
"It then decodes the predicted and label ids to strings. Finally,\n",
"it computes the WER between the predictions and reference labels. \n",
"Here, we have the option of evaluating with the 'normalised' transcriptions \n",
"and predictions. We recommend you set this to `True` to benefit from the WER \n",
"improvement obtained by normalising the transcriptions."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "23959a70-22d0-4ffe-9fa1-72b61e75bb52",
"metadata": {
"id": "23959a70-22d0-4ffe-9fa1-72b61e75bb52"
},
"outputs": [],
"source": [
"# evaluate with the 'normalised' WER\n",
"do_normalize_eval = True\n",
"\n",
"def compute_metrics(pred):\n",
" pred_ids = pred.predictions\n",
" label_ids = pred.label_ids\n",
"\n",
" # replace -100 with the pad_token_id\n",
" label_ids[label_ids == -100] = processor.tokenizer.pad_token_id\n",
"\n",
" # we do not want to group tokens when computing the metrics\n",
" pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n",
" label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n",
"\n",
" if do_normalize_eval:\n",
" pred_str = [normalizer(pred) for pred in pred_str]\n",
" label_str = [normalizer(label) for label in label_str]\n",
"\n",
" wer = 100 * metric.compute(predictions=pred_str, references=label_str)\n",
"\n",
" return {\"wer\": wer}"
]
},
{
"cell_type": "markdown",
"id": "daf2a825-6d9f-4a23-b145-c37c0039075b",
"metadata": {
"id": "daf2a825-6d9f-4a23-b145-c37c0039075b"
},
"source": [
"### Load a Pre-Trained Checkpoint"
]
},
{
"cell_type": "markdown",
"id": "437a97fa-4864-476b-8abc-f28b8166cfa5",
"metadata": {
"id": "437a97fa-4864-476b-8abc-f28b8166cfa5"
},
"source": [
"Now let's load the pre-trained Whisper `small` checkpoint. Again, this \n",
"is trivial through use of 🤗 Transformers!"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f",
"metadata": {
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f"
},
"outputs": [],
"source": [
"from transformers import WhisperForConditionalGeneration\n",
"\n",
"model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-medium\")"
]
},
{
"cell_type": "markdown",
"id": "a15ead5f-2277-4a39-937b-585c2497b2df",
"metadata": {
"id": "a15ead5f-2277-4a39-937b-585c2497b2df"
},
"source": [
"Override generation arguments - no tokens are forced as decoder outputs (see [`forced_decoder_ids`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.forced_decoder_ids)), no tokens are suppressed during generation (see [`suppress_tokens`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.suppress_tokens)). Set `use_cache` to False since we're using gradient checkpointing, and the two are incompatible:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f",
"metadata": {
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f"
},
"outputs": [],
"source": [
"model.config.forced_decoder_ids = None\n",
"model.config.suppress_tokens = []\n",
"model.config.use_cache = False"
]
},
{
"cell_type": "markdown",
"id": "2178dea4-80ca-47b6-b6ea-ba1915c90c06",
"metadata": {
"id": "2178dea4-80ca-47b6-b6ea-ba1915c90c06"
},
"source": [
"### Define the Training Configuration"
]
},
{
"cell_type": "markdown",
"id": "c21af1e9-0188-4134-ac82-defc7bdcc436",
"metadata": {
"id": "c21af1e9-0188-4134-ac82-defc7bdcc436"
},
"source": [
"In the final step, we define all the parameters related to training. For more detail on the training arguments, refer to the Seq2SeqTrainingArguments [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments)."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a",
"metadata": {
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a"
},
"outputs": [],
"source": [
"from transformers import Seq2SeqTrainingArguments\n",
"\n",
"training_args = Seq2SeqTrainingArguments(\n",
" output_dir=\"./\",\n",
" per_device_train_batch_size=32,\n",
" gradient_accumulation_steps=8, # increase by 2x for every 2x decrease in batch size\n",
" learning_rate=1e-5,\n",
" warmup_steps=500,\n",
" max_steps=2000,\n",
" gradient_checkpointing=True,\n",
" fp16=True,\n",
" evaluation_strategy=\"steps\",\n",
" per_device_eval_batch_size=8,\n",
" predict_with_generate=True,\n",
" generation_max_length=225,\n",
" save_steps=1000,\n",
" eval_steps=1000,\n",
" logging_steps=25,\n",
" report_to=[\"tensorboard\"],\n",
" load_best_model_at_end=True,\n",
" metric_for_best_model=\"wer\",\n",
" greater_is_better=False,\n",
" push_to_hub=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b3a944d8-3112-4552-82a0-be25988b3857",
"metadata": {
"id": "b3a944d8-3112-4552-82a0-be25988b3857"
},
"source": [
"**Note**: if one does not want to upload the model checkpoints to the Hub, \n",
"set `push_to_hub=False`."
]
},
{
"cell_type": "markdown",
"id": "bac29114-d226-4f54-97cf-8718c9f94e1e",
"metadata": {
"id": "bac29114-d226-4f54-97cf-8718c9f94e1e"
},
"source": [
"We can forward the training arguments to the 🤗 Trainer along with our model,\n",
"dataset, data collator and `compute_metrics` function:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "d546d7fe-0543-479a-b708-2ebabec19493",
"metadata": {
"id": "d546d7fe-0543-479a-b708-2ebabec19493"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/whisper-medium-tamil/./ is already a clone of https://huggingface.co/kurianbenoy/whisper-medium-tamil. Make sure you pull the latest changes with `repo.git_pull()`.\n",
"max_steps is given, it will override any value given in num_train_epochs\n",
"Using cuda_amp half precision backend\n"
]
}
],
"source": [
"from transformers import Seq2SeqTrainer\n",
"\n",
"trainer = Seq2SeqTrainer(\n",
" args=training_args,\n",
" model=model,\n",
" train_dataset=common_voice[\"train\"],\n",
" eval_dataset=common_voice[\"test\"],\n",
" data_collator=data_collator,\n",
" compute_metrics=compute_metrics,\n",
" tokenizer=processor.feature_extractor,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "uOrRhDGtN5S4",
"metadata": {
"id": "uOrRhDGtN5S4"
},
"source": [
"We'll save the processor object once before starting training. Since the processor is not trainable, it won't change over the course of training:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "-2zQwMfEOBJq",
"metadata": {
"id": "-2zQwMfEOBJq"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Feature extractor saved in ./preprocessor_config.json\n",
"tokenizer config file saved in ./tokenizer_config.json\n",
"Special tokens file saved in ./special_tokens_map.json\n",
"added tokens file saved in ./added_tokens.json\n"
]
}
],
"source": [
"processor.save_pretrained(training_args.output_dir)"
]
},
{
"cell_type": "markdown",
"id": "7f404cf9-4345-468c-8196-4bd101d9bd51",
"metadata": {
"id": "7f404cf9-4345-468c-8196-4bd101d9bd51"
},
"source": [
"### Training"
]
},
{
"cell_type": "markdown",
"id": "5e8b8d56-5a70-4f68-bd2e-f0752d0bd112",
"metadata": {
"id": "5e8b8d56-5a70-4f68-bd2e-f0752d0bd112"
},
"source": [
"Training will take approximately 5-10 hours depending on your GPU. The peak GPU memory for the given training configuration is approximately 36GB. \n",
"Depending on your GPU, it is possible that you will encounter a CUDA `\"out-of-memory\"` error when you launch training. \n",
"In this case, you can reduce the `per_device_train_batch_size` incrementally by factors of 2 \n",
"and employ [`gradient_accumulation_steps`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments.gradient_accumulation_steps)\n",
"to compensate.\n",
"\n",
"To launch training, simply execute:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de",
"metadata": {
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The following columns in the training set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n",
"/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n",
"***** Running training *****\n",
" Num examples = 13844\n",
" Num Epochs = 47\n",
" Instantaneous batch size per device = 32\n",
" Total train batch size (w. parallel, distributed & accumulation) = 128\n",
" Gradient Accumulation steps = 4\n",
" Total optimization steps = 5000\n",
" Number of trainable parameters = 763857920\n"
]
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='7' max='5000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [ 7/5000 03:15 < 54:16:34, 0.03 it/s, Epoch 0.06/47]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" <th>Validation Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Input \u001b[0;32mIn [21]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/trainer.py:1501\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_wrapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\n\u001b[1;32m 1498\u001b[0m inner_training_loop \u001b[38;5;241m=\u001b[39m find_executable_batch_size(\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_inner_training_loop, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_train_batch_size, args\u001b[38;5;241m.\u001b[39mauto_find_batch_size\n\u001b[1;32m 1500\u001b[0m )\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1503\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1504\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1505\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1506\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/trainer.py:1723\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 1720\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_load_rng_state(resume_from_checkpoint)\n\u001b[1;32m 1722\u001b[0m step \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[0;32m-> 1723\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, inputs \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(epoch_iterator):\n\u001b[1;32m 1724\u001b[0m \n\u001b[1;32m 1725\u001b[0m \u001b[38;5;66;03m# Skip past any already trained steps if resuming training\u001b[39;00m\n\u001b[1;32m 1726\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m steps_trained_in_current_epoch \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 1727\u001b[0m steps_trained_in_current_epoch \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py:628\u001b[0m, in \u001b[0;36m_BaseDataLoaderIter.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 625\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sampler_iter \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 626\u001b[0m \u001b[38;5;66;03m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[39;00m\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reset() \u001b[38;5;66;03m# type: ignore[call-arg]\u001b[39;00m\n\u001b[0;32m--> 628\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_next_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 629\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 630\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_dataset_kind \u001b[38;5;241m==\u001b[39m _DatasetKind\u001b[38;5;241m.\u001b[39mIterable \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 631\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 632\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called:\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py:671\u001b[0m, in \u001b[0;36m_SingleProcessDataLoaderIter._next_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 669\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_next_data\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 670\u001b[0m index \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_next_index() \u001b[38;5;66;03m# may raise StopIteration\u001b[39;00m\n\u001b[0;32m--> 671\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset_fetcher\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfetch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# may raise StopIteration\u001b[39;00m\n\u001b[1;32m 672\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pin_memory:\n\u001b[1;32m 673\u001b[0m data \u001b[38;5;241m=\u001b[39m _utils\u001b[38;5;241m.\u001b[39mpin_memory\u001b[38;5;241m.\u001b[39mpin_memory(data, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pin_memory_device)\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py:58\u001b[0m, in \u001b[0;36m_MapDatasetFetcher.fetch\u001b[0;34m(self, possibly_batched_index)\u001b[0m\n\u001b[1;32m 56\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset\u001b[38;5;241m.\u001b[39m__getitems__(possibly_batched_index)\n\u001b[1;32m 57\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m---> 58\u001b[0m data \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset[idx] \u001b[38;5;28;01mfor\u001b[39;00m idx \u001b[38;5;129;01min\u001b[39;00m possibly_batched_index]\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 60\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset[possibly_batched_index]\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py:58\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 56\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset\u001b[38;5;241m.\u001b[39m__getitems__(possibly_batched_index)\n\u001b[1;32m 57\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m---> 58\u001b[0m data \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdataset\u001b[49m\u001b[43m[\u001b[49m\u001b[43midx\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m idx \u001b[38;5;129;01min\u001b[39;00m possibly_batched_index]\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 60\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset[possibly_batched_index]\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py:2356\u001b[0m, in \u001b[0;36mDataset.__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2354\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__getitem__\u001b[39m(\u001b[38;5;28mself\u001b[39m, key): \u001b[38;5;66;03m# noqa: F811\u001b[39;00m\n\u001b[1;32m 2355\u001b[0m \u001b[38;5;124;03m\"\"\"Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).\"\"\"\u001b[39;00m\n\u001b[0;32m-> 2356\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_getitem\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2357\u001b[0m \u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2358\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py:2341\u001b[0m, in \u001b[0;36mDataset._getitem\u001b[0;34m(self, key, decoded, **kwargs)\u001b[0m\n\u001b[1;32m 2339\u001b[0m formatter \u001b[38;5;241m=\u001b[39m get_formatter(format_type, features\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfeatures, decoded\u001b[38;5;241m=\u001b[39mdecoded, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mformat_kwargs)\n\u001b[1;32m 2340\u001b[0m pa_subtable \u001b[38;5;241m=\u001b[39m query_table(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_data, key, indices\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_indices \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_indices \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m-> 2341\u001b[0m formatted_output \u001b[38;5;241m=\u001b[39m \u001b[43mformat_table\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2342\u001b[0m \u001b[43m \u001b[49m\u001b[43mpa_subtable\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mformatter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mformatter\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mformat_columns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mformat_columns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moutput_all_columns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_all_columns\u001b[49m\n\u001b[1;32m 2343\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2344\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m formatted_output\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/datasets/formatting/formatting.py:509\u001b[0m, in \u001b[0;36mformat_table\u001b[0;34m(table, key, formatter, format_columns, output_all_columns)\u001b[0m\n\u001b[1;32m 507\u001b[0m python_formatter \u001b[38;5;241m=\u001b[39m PythonFormatter(features\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 508\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m format_columns \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 509\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mformatter\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpa_table\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mquery_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquery_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 510\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m query_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcolumn\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 511\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m format_columns:\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/datasets/formatting/formatting.py:282\u001b[0m, in \u001b[0;36mFormatter.__call__\u001b[0;34m(self, pa_table, query_type)\u001b[0m\n\u001b[1;32m 280\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, pa_table: pa\u001b[38;5;241m.\u001b[39mTable, query_type: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[RowFormat, ColumnFormat, BatchFormat]:\n\u001b[1;32m 281\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m query_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrow\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 282\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat_row\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpa_table\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 283\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m query_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcolumn\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 284\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mformat_column(pa_table)\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/datasets/formatting/formatting.py:311\u001b[0m, in \u001b[0;36mPythonFormatter.format_row\u001b[0;34m(self, pa_table)\u001b[0m\n\u001b[1;32m 310\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mformat_row\u001b[39m(\u001b[38;5;28mself\u001b[39m, pa_table: pa\u001b[38;5;241m.\u001b[39mTable) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mdict\u001b[39m:\n\u001b[0;32m--> 311\u001b[0m row \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpython_arrow_extractor\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextract_row\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpa_table\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 312\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdecoded:\n\u001b[1;32m 313\u001b[0m row \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpython_features_decoder\u001b[38;5;241m.\u001b[39mdecode_row(row)\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/datasets/formatting/formatting.py:141\u001b[0m, in \u001b[0;36mPythonArrowExtractor.extract_row\u001b[0;34m(self, pa_table)\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mextract_row\u001b[39m(\u001b[38;5;28mself\u001b[39m, pa_table: pa\u001b[38;5;241m.\u001b[39mTable) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mdict\u001b[39m:\n\u001b[0;32m--> 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _unnest(\u001b[43mpa_table\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_pydict\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m)\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "markdown",
"id": "810ced54-7187-4a06-b2fe-ba6dcca94dc3",
"metadata": {
"id": "810ced54-7187-4a06-b2fe-ba6dcca94dc3"
},
"source": [
"We can label our checkpoint with the `whisper-event` tag on push by setting the appropriate key-word arguments (kwargs):"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663",
"metadata": {
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663"
},
"outputs": [],
"source": [
"kwargs = {\n",
" \"dataset_tags\": \"mozilla-foundation/common_voice_11_0\",\n",
" \"dataset\": \"Common Voice 11.0\", # a 'pretty' name for the training dataset\n",
" \"language\": \"hi\",\n",
" \"model_name\": \"Whisper medium ta\", # a 'pretty' name for your model\n",
" \"finetuned_from\": \"openai/whisper-medium\",\n",
" \"tasks\": \"automatic-speech-recognition\",\n",
" \"tags\": \"whisper-event\",\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "090d676a-f944-4297-a938-a40eda0b2b68",
"metadata": {
"id": "090d676a-f944-4297-a938-a40eda0b2b68"
},
"source": [
"The training results can now be uploaded to the Hub. To do so, execute the `push_to_hub` command and save the preprocessor object we created:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d7030622-caf7-4039-939b-6195cdaa2585",
"metadata": {
"id": "d7030622-caf7-4039-939b-6195cdaa2585"
},
"outputs": [],
"source": [
"trainer.push_to_hub(**kwargs)"
]
},
{
"cell_type": "markdown",
"id": "ca743fbd-602c-48d4-ba8d-a2fe60af64ba",
"metadata": {
"id": "ca743fbd-602c-48d4-ba8d-a2fe60af64ba"
},
"source": [
"## Closing Remarks"
]
},
{
"cell_type": "markdown",
"id": "7f737783-2870-4e35-aa11-86a42d7d997a",
"metadata": {
"id": "7f737783-2870-4e35-aa11-86a42d7d997a"
},
"source": [
"In this blog, we covered a step-by-step guide on fine-tuning Whisper for multilingual ASR \n",
"using 🤗 Datasets, Transformers and the Hugging Face Hub. For more details on the Whisper model, the Common Voice dataset and the theory behind fine-tuning, refere to the accompanying [blog post](https://huggingface.co/blog/fine-tune-whisper). If you're interested in fine-tuning other \n",
"Transformers models, both for English and multilingual ASR, be sure to check out the \n",
"examples scripts at [examples/pytorch/speech-recognition](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition)."
]
}
],
"metadata": {
"colab": {
"include_colab_link": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|