LunarLander-v2-PPO / config.json
kvarnalidis's picture
PPO agent for LunarLander-v2
91b41a1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d2dfa2dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d2dfa2e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d2dfa2ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d2dfa2f80>", "_build": "<function ActorCriticPolicy._build at 0x7f2d2dfa3010>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d2dfa30a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2d2dfa3130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d2dfa31c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d2dfa3250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d2dfa32e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d2dfa3370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d2dfa3400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2d2df93d40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687956140342919601, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI02sj127na8Wpa5vLrh1zmZjHw9HZFFPgAAgD8AAAAAwHlEvvDVjj+mW8O+QcW+vo6par4Cq9O9AAAAAAAAAACacDq9Re1pPhCSYL1yXFa+slamvIMMeD0AAAAAAAAAAEachD6HNoM/voqDPDZSiL5iZiE+3eI3vgAAAAAAAAAAjRy0vSZR+z4gz549tGYHvthFbjxu0Xk9AAAAAAAAAAD6l0k+fOEAPX09vzrVUJ85sOWOPvhMHboAAIA/AACAPxpOJb0k3kk/iFISu5xDrr6PkgG9skyEvAAAAAAAAAAAMxMsu4H6p7xSlaG8wX8PPY80570UdYS5AACAPwAAgD/mxqo99pwnur3qVLudaC84drXJun3c9DkAAIA/AAAAAICkND0vpW4+VnrQvZwoU75tZIy9qsHquwAAAAAAAAAAc+XjvfboTbp7BSW8EY2ZuMlhwbtmOgs4AACAPwAAgD/NnUy+T91qP0HWOrz9YZC+t5CXvVb6Oz0AAAAAAAAAAGbB1LyfZZ+7PV2BPFF8kDwu19w83fF1vQAAgD8AAIA/JjFZvnwRzz6oe9c9wVgnvsM/VzuLq7a8AAAAAAAAAADmVZy9uA7suQaQfzviByU2jbcxO99fmboAAIA/AACAP1pPAL4sQLM/rclavrYGmL7IaxW+ODZXvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0V+tSydFyMAWyUTTcBjAF0lEdAo2kxlYlpoXV9lChoBkdAQacp1A7gbmgHTQABaAhHQKNp3s1KoQ51fZQoaAZHQHC+4MBp5/toB02dAWgIR0Cjax8p9ZzQdX2UKGgGR0Bxd+5WilBQaAdNHAJoCEdAo2smd9Ujs3V9lChoBkdAb5u/0NBnjGgHTQQDaAhHQKNrnZEDyOJ1fZQoaAZHQHGRDW5H3DhoB01MAWgIR0CjbSjxTbWVdX2UKGgGR0ByikQ4CIUKaAdNmAFoCEdAo21sSbpeNXV9lChoBkdAbJAQXAM2FWgHTY8BaAhHQKNvaQUYbbV1fZQoaAZHQHEd19jPOY9oB01QAWgIR0Cjb9wQtjCpdX2UKGgGR0BtBOAuqWC3aAdNdgFoCEdAo3AceZG8VnV9lChoBkdAcEq3Ns3yZ2gHTWoBaAhHQKNwsPcSGrV1fZQoaAZHQGumLJ8v25BoB01NAWgIR0CjcVgLRa5gdX2UKGgGR0Buzi5y2hIwaAdNdwFoCEdAo3IrwOOKfnV9lChoBkdAbbW5oXbdrWgHTWgBaAhHQKNyldAPd2x1fZQoaAZHQGaaVqveP7xoB03oA2gIR0CjcsmVJL/TdX2UKGgGR0BufgSJ0nw5aAdNXQFoCEdAo3QY1+AmRnV9lChoBkdAbUkZ88cMmWgHTZEBaAhHQKN0VOUMXrN1fZQoaAZHQG7Dkqc3EQ5oB01eAWgIR0CjdiP0AcT8dX2UKGgGR0BxZ72YfGMoaAdNSQFoCEdAo3/HvOQhfXV9lChoBkdAb96WmgrYoWgHTT8BaAhHQKOADXXAdn11fZQoaAZHQHDw+jASFoNoB026AWgIR0CjgKOZb6gvdX2UKGgGR0Bwx/KyOaOQaAdNYwJoCEdAo4Fz2tdRi3V9lChoBkdAcTd7Dl5nlGgHTW0BaAhHQKOBjT5O8Ch1fZQoaAZHQG2tig9Net1oB01eAWgIR0CjgcWAPNFCdX2UKGgGR0A84duHerMlaAdNHAFoCEdAo4I3solUqHV9lChoBkdAcIZImw7kn2gHTYQBaAhHQKODm0xdpqR1fZQoaAZHQG4c6pPykKxoB01yAWgIR0CjhBy4nWrfdX2UKGgGR0BxFwnOSntOaAdNgwFoCEdAo4Uuh4+r2nV9lChoBkdAayCrT6SDAmgHTVIBaAhHQKOFqEM9bHJ1fZQoaAZHQG8uW4uscQ1oB01xAWgIR0CjhvLrgOz6dX2UKGgGR0BkwrR0EHMVaAdN6ANoCEdAo4oKMkyDZnV9lChoBkdAb93yup0fYGgHTYYBaAhHQKOKg+j/Mnt1fZQoaAZHQCry2a2F36hoB00aAWgIR0CjiuG3vx6OdX2UKGgGR0A37LfDUExJaAdNIAFoCEdAo4rz238XN3V9lChoBkdATk7EtNBWxWgHTQcBaAhHQKOLLxDLKV91fZQoaAZHQHEfQ2Q4jr1oB010AWgIR0Cji/ScLBsRdX2UKGgGR0BuLg1WKdhBaAdNUAFoCEdAo4ywoXsPa3V9lChoBkdAbV2okzGgjGgHTXwBaAhHQKOMr8jRlYl1fZQoaAZHQG1s5y2hIvtoB01BAWgIR0CjjfHuRcNZdX2UKGgGR0BXA/0AcT8HaAdN6ANoCEdAo47ZSeiBXnV9lChoBkdAca8rMC9ytGgHTUgBaAhHQKOPLVFQVKx1fZQoaAZHQFmpyn1nM+xoB03oA2gIR0CjjzelKsdUdX2UKGgGR0BvZrBXS0BwaAdNgAFoCEdAo5ALRSgoPXV9lChoBkdAb3/P6be/H2gHTVMBaAhHQKOQSHKwIMV1fZQoaAZHQBlLXQMQVbloB00OAWgIR0CjkL6u4gA7dX2UKGgGR0ByaIfs/pt8aAdNEAJoCEdAo5ICnpB5X3V9lChoBkdAcY5xTKkl/2gHTWgBaAhHQKOTBn9Nvfl1fZQoaAZHQG/N09pyp71oB01pAWgIR0Cjk74oJAt4dX2UKGgGR0Bxz8VZcLSeaAdNrwFoCEdAo5SkNvwVkHV9lChoBkdAcBi4W1twaWgHTYgBaAhHQKOVOy8BdUt1fZQoaAZHQG25g6ltTDRoB03HAWgIR0CjlXP5P/JedX2UKGgGR8Awk/BWPtD2aAdNJwFoCEdAo5XRkRSP2nV9lChoBkdAPbYgmqo60mgHTQcBaAhHQKOWMSyt3fR1fZQoaAZHQHDX+AVfu1FoB03EAWgIR0CjlokhaC+UdX2UKGgGR0BwSddonKGMaAdNpgFoCEdAo5c825xzaXV9lChoBkdAcd62iL2pQ2gHTZcBaAhHQKOXwTdtVJd1fZQoaAZHQG+S5flZHNJoB01qAWgIR0Cjl/UtI066dX2UKGgGR0BuYJufmLccaAdNkwFoCEdAo5f8qhDgInV9lChoBkdAbZhzjm0VrWgHTbcDaAhHQKOYPXNke6t1fZQoaAZHQGzHfBFd9lVoB01pAWgIR0CjmI9gnc+JdX2UKGgGR0BD5SSmqHXVaAdL8GgIR0CjmMePzWf9dX2UKGgGR0BvOVINEw36aAdNbQFoCEdAo6PSfL9uP3V9lChoBkdAbm84OtnwomgHTaIBaAhHQKOkKvN/vv11fZQoaAZHQHHBv82rGR5oB00zAWgIR0Cjpc4NRWLhdX2UKGgGR0BrqWhh6SkkaAdNaQFoCEdAo6Xpvm5lOHV9lChoBkdAcXGE1VHWjGgHTXcBaAhHQKOnkinHead1fZQoaAZHQGzE3/YJ3PloB01SAWgIR0CjqBewC8vmdX2UKGgGR0BveEyrPt2LaAdNdwFoCEdAo6jeeHzpYHV9lChoBkdAbqivTPSlWWgHTVoBaAhHQKOpp0Qsf7t1fZQoaAZHQHEW22oegctoB01hAWgIR0CjqnDVH4GmdX2UKGgGR0BwzK35N47jaAdNWAFoCEdAo6p6ya/h2nV9lChoBkdAbrJzltCRfWgHTUYBaAhHQKOq15sTFl11fZQoaAZHQG7zZkK/mDFoB016AWgIR0Cjqz/FaSs9dX2UKGgGR0BtldY+0PYnaAdNVwFoCEdAo6t0J8fFJnV9lChoBkdAXDATK1XvIGgHTegDaAhHQKOrfLHMlkZ1fZQoaAZHQG9DD1f3N9poB006AWgIR0CjrLVBt1p1dX2UKGgGR0BwQu5I6KceaAdNXQFoCEdAo62o7eVLSXV9lChoBkdAcNuy/KyOaWgHTVYBaAhHQKOuokCV8kV1fZQoaAZHQHIRfJRwZO1oB00tAWgIR0Cjrt/WlMyrdX2UKGgGR0Bwpv3h4t6HaAdNQQFoCEdAo6+yc/dIoXV9lChoBkdAcVZNtqHoHWgHTYABaAhHQKOvvpwjt5V1fZQoaAZHQGqZ4IKMNttoB01bAWgIR0CjsW3BpHqedX2UKGgGR0BsezFyaNMoaAdNcwFoCEdAo7F9RaX8fnV9lChoBkdAcF5wAU+LWWgHTT4BaAhHQKOxkchkiEB1fZQoaAZHQG7tcTBZZB9oB01YAWgIR0CjsiO8CgbqdX2UKGgGR0Bx8ybTc6/7aAdNTQFoCEdAo7LrQLNOd3V9lChoBkdAbrbwx33Yc2gHTX8BaAhHQKOzWZssQNF1fZQoaAZHQHEXB99c8kloB01vAWgIR0Cjs2r5ZbIMdX2UKGgGR0Bt7dUuL740aAdNUwFoCEdAo7RQJkXk53V9lChoBkdASqyQ/5ckdGgHTSkBaAhHQKO0ZKfWcz91fZQoaAZHQGEkAdn003xoB03oA2gIR0Cjtef4AS39dX2UKGgGR0A4yWHUMG5daAdNIQFoCEdAo7YcG3WnTHV9lChoBkdAa/6DjBEa2mgHTU4BaAhHQKO2WgIyCWh1fZQoaAZHQGzla/RE4NtoB01vAWgIR0CjttmrsByTdX2UKGgGR0BqZxyEL6UJaAdNSAFoCEdAo7b6cf/3nXV9lChoBkdAbIEBq9GqgmgHTVEBaAhHQKO4pAlfJFN1fZQoaAZHQG0Fi2Dxsl9oB01mAWgIR0CjuRA7PppwdX2UKGgGR0BZGqRU3n6maAdN6ANoCEdAo7kYvg3tKXV9lChoBkdAcHd6oVEeAGgHTYQBaAhHQKO52h6By0d1fZQoaAZHQHBqgd4mkWRoB01uAWgIR0CjuetEXtSidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}