File size: 32,519 Bytes
05bc6d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
from .configuration_baichuan import BaichuanConfig
from .generation_utils import build_chat_input, TextIterStreamer
import math
from threading import Thread
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
from transformers import PreTrainedModel, PretrainedConfig
from transformers.activations import ACT2FN
from transformers.generation.utils import GenerationConfig
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.utils import logging, ContextManagers
import os
from contextlib import contextmanager
from accelerate import init_empty_weights
logger = logging.get_logger(__name__)
try:
from xformers import ops as xops
except ImportError:
xops = None
logger.warning(
"Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
)
def _get_interleave(n):
def _get_interleave_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if math.log2(n).is_integer():
return _get_interleave_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
_get_interleave_power_of_2(closest_power_of_2)
+ _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
def _fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
_future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1)
_future_mask = _future_mask.unsqueeze(0) + alibi
new_future_mask = _future_mask.to(tensor)
return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos]
def _gen_alibi_mask(tensor, n_head, max_pos):
slopes = torch.Tensor(_get_interleave(n_head))
position_point = torch.arange(max_pos) - max_pos + 1
position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1)
diag = torch.diag(position_point[0])
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2)
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
alibi = alibi.view(n_head, 1, max_pos)
alibi_mask = torch.triu(_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1)
alibi_mask = alibi_mask.unsqueeze(0) + alibi
return alibi_mask
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, epsilon=1e-6):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(hidden_size))
self.epsilon = epsilon
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
# convert into half-precision
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class MLP(torch.nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class BaichuanAttention(torch.nn.Module):
def __init__(self, config: BaichuanConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.model_max_length
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
)
self.W_pack = torch.nn.Linear(
self.hidden_size, 3 * self.hidden_size, bias=False
)
self.o_proj = torch.nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
proj = self.W_pack(hidden_states)
proj = (
proj.unflatten(-1, (3, self.hidden_size))
.unsqueeze(0)
.transpose(0, -2)
.squeeze(-2)
)
query_states = (
proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
)
key_states = (
proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
)
value_states = (
proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
if xops is not None and self.training:
attn_weights = None
# query_states = query_states.transpose(1, 2)
# key_states = key_states.transpose(1, 2)
# value_states = value_states.transpose(1, 2)
# attn_output = xops.memory_efficient_attention(
# query_states, key_states, value_states, attn_bias=attention_mask
# )
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
attn_output = attn_output.transpose(1, 2)
else:
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_dim)
if attention_mask is not None:
if q_len == 1: # inference with cache
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :]
else:
attention_mask = attention_mask[:, -1:, :]
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class BaichuanLayer(torch.nn.Module):
def __init__(self, config: BaichuanConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = BaichuanAttention(config=config)
self.mlp = MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, epsilon=config.rms_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
return outputs
class BaichuanPreTrainedModel(PreTrainedModel):
config_class = BaichuanConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["BaichuanLayer"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, torch.nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, torch.nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BaichuanModel):
module.gradient_checkpointing = value
class BaichuanModel(BaichuanPreTrainedModel):
def __init__(self, config: BaichuanConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.n_head = config.num_attention_heads
self.embed_tokens = torch.nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = torch.nn.ModuleList(
[BaichuanLayer(config) for _ in range(config.num_hidden_layers)]
)
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
self.gradient_checkpointing = config.gradient_checkpointing
self.post_init()
self.max_cache_pos = config.model_max_length
self.first_run = True
self.alibi_mask = None
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def get_alibi_mask(self, tensor, seq_length_with_past):
if self.training:
slopes = torch.Tensor(_get_interleave(self.n_head))
position_point = (
torch.arange(seq_length_with_past) - seq_length_with_past + 1
)
position_point = (
position_point.unsqueeze(0)
.unsqueeze(0)
.expand(self.n_head, seq_length_with_past, -1)
)
diag = torch.diag(position_point[0])
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(
-1, -2
)
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
mask = _buffered_future_mask(
tensor, seq_length_with_past, alibi, self.n_head
)
else:
if self.first_run:
self.first_run = False
self.register_buffer(
"future_mask",
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
tensor
),
persistent=False,
)
if seq_length_with_past > self.max_cache_pos:
self.max_cache_pos = seq_length_with_past
self.register_buffer(
"future_mask",
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
tensor
),
persistent=False,
)
mask = self.future_mask[
: self.n_head, :seq_length_with_past, :seq_length_with_past
]
return mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithPast]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot provide both input_ids and inputs_embeds simultaneously"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You need to provide input_ids or inputs_embeds")
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
seq_length_with_past = seq_length
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self.training:
if (
self.alibi_mask is None
or self.alibi_mask.shape[-1] != seq_length_with_past
):
self.alibi_mask = self.get_alibi_mask(
inputs_embeds, seq_length_with_past
)
alibi_mask = self.alibi_mask
else:
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
if attention_mask is not None:
if len(attention_mask.shape) == 2:
expanded_mask = attention_mask.to(alibi_mask.dtype)
expanded_mask = torch.tril(
torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
else:
expanded_mask = attention_mask
bsz = inputs_embeds.size(0)
src_len, tgt_len = alibi_mask.size()[-2:]
expanded_mask = (
expanded_mask.unsqueeze(1)
.expand(bsz, 1, src_len, tgt_len)
.to(alibi_mask.dtype)
)
inverted_mask = 1.0 - expanded_mask
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min
)
attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
else:
attention_mask = alibi_mask
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[idx] if past_key_values is not None else None
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class NormHead(nn.Module):
def __init__(self, hidden_size, vocab_size, bias=False):
super().__init__()
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
self.first_flag = True
def forward(self, hidden_states):
if self.training:
norm_weight = nn.functional.normalize(self.weight)
self.first_flag = True
elif self.first_flag:
self.first_flag = False
self.weight.data = nn.functional.normalize(self.weight)
norm_weight = self.weight
else:
norm_weight = self.weight
return nn.functional.linear(hidden_states, norm_weight)
_init_weights = True
@contextmanager
def no_init_weights(_enable=True):
global _init_weights
old_init_weights = _init_weights
if _enable:
_init_weights = False
try:
yield
finally:
_init_weights = old_init_weights
class BaichuanForCausalLM(BaichuanPreTrainedModel):
def __init__(self, config, *model_args, **model_kwargs):
super().__init__(config, *model_args, **model_kwargs)
self.model = BaichuanModel(config)
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
#if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
try:
from .quantizer import quantize_offline, init_model_weight_int4
except ImportError:
raise ImportError(f"Needs quantize_offline to run quantize.")
quantize_offline(self, 4)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: bool = None,
**kwargs,
):
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=False,
proxies=None,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder="",
_from_auto=False,
_from_pipeline=None,
**kwargs,
)
else:
model_kwargs = kwargs
if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
try:
from .quantizer import init_model_weight_int4
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
from accelerate.utils import CustomDtype
from accelerate.utils import get_balanced_memory
except ImportError:
raise ImportError(f"Needs import model weight init func to run quantize.")
# Instantiate model.
init_contexts = [no_init_weights(_enable=True)]
init_contexts.append(init_empty_weights())
with ContextManagers(init_contexts):
model = cls(config)
model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
state_dict = torch.load(model_file, map_location="cpu")
model.is_quantized = True
device_map = kwargs.pop("device_map", None)
torch_dtype = kwargs.pop("torch_dtype", None)
if device_map is not None:
kwargs = {"no_split_module_classes": model._no_split_modules}
target_dtype = CustomDtype.INT4
max_memory = get_balanced_memory(
model,
dtype=target_dtype,
low_zero=(device_map == "balanced_low_0"),
max_memory=None,
**kwargs,
)
kwargs["max_memory"] = max_memory
device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
model = init_model_weight_int4(config, model, state_dict)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
# If it is a model with generation capabilities, attempt to load the generation config
if model.can_generate():
try:
model.generation_config = GenerationConfig.from_pretrained(
pretrained_model_name_or_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=False,
proxies=None,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder="",
_from_auto=False,
_from_pipeline=None,
**kwargs,
)
except (OSError, TypeError):
logger.info(
"Generation config file not found, using a generation config created from the model config."
)
pass
if device_map is not None:
dispatch_model(model, device_map=device_map)
return model
return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
use_safetensors=use_safetensors, **kwargs)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
softmax_normalizer = shift_logits.max(-1).values ** 2
z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels) + z_loss
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def quantize(self, bits: int):
try:
from .quantizer import quantize_online
except ImportError:
raise ImportError(f"Needs QLinear to run quantize.")
return quantize_online(self, bits)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
return tuple(
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
for layer_past in past_key_values
)
def _build_chat_input(
self, tokenizer, messages: List[dict], max_new_tokens: int = 0
):
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
max_input_tokens = self.config.model_max_length - max_new_tokens
max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
total_input, round_input = [], []
for i, message in enumerate(messages[::-1]):
content_tokens = tokenizer.encode(message["content"])
if message["role"] == "user":
round_input = (
[self.generation_config.user_token_id]
+ content_tokens
+ round_input
)
if (
total_input
and len(total_input) + len(round_input) > max_input_tokens
):
break
else:
total_input = round_input + total_input
if len(total_input) >= max_input_tokens:
break
else:
round_input = []
elif message["role"] == "assistant":
round_input = (
[self.generation_config.assistant_token_id]
+ content_tokens
+ [self.generation_config.eos_token_id]
+ round_input
)
else:
raise ValueError(f"message role not supported yet: {message['role']}")
total_input = total_input[-max_input_tokens:] # truncate left
total_input.append(self.generation_config.assistant_token_id)
total_input = torch.LongTensor([total_input]).to(self.device)
return total_input
def chat(self, tokenizer, messages: List[dict], stream=False,
generation_config: Optional[GenerationConfig]=None):
generation_config = generation_config or self.generation_config
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
if stream:
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
Thread(target=self.generate, kwargs=dict(
inputs=input_ids, streamer=streamer,
generation_config=generation_config,
)).start()
return streamer
else:
outputs = self.generate(input_ids, generation_config=generation_config)
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
return response
|