Text Generation
GGUF
English
Chinese
Inference Endpoints
File size: 2,409 Bytes
fbfefe5
 
76b5c5a
 
 
 
 
 
 
fbfefe5
76b5c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: cc-by-nc-nd-4.0
datasets:
- kwaikeg/KAgentInstruct
- kwaikeg/KAgentBench
language:
- en
- zh
pipeline_tag: text-generation
---


KwaiAgents ([Github](https://github.com/KwaiKEG/KwaiAgents)) is a series of Agent-related works open-sourced by the [KwaiKEG](https://github.com/KwaiKEG) from [Kuaishou Technology](https://www.kuaishou.com/en). The open-sourced content includes:

1. **KAgentSys-Lite**: An experimental Agent Loop implemented based on open-source search engines, browsers, time, calendar, weather, and other tools, which is only missing the memory mechanism and some search capabilities compared to the system in the paper.
2. **KAgentLMs**: A series of large language models with Agent capabilities such as planning, reflection, and tool-use, acquired through the Meta-agent tuning proposed in the paper.
3. **KAgentInstruct**: Fine-tuned data of instructions generated by the Meta-agent in the paper.
4. **KAgentBench**: Over 3,000 human-edited, automated evaluation data for testing Agent capabilities, with evaluation dimensions including planning, tool-use, reflection, concluding, and profiling.


## User Guide

### Serving by [Lamma.cpp](https://github.com/ggerganov/llama.cpp) (CPU)
llama-cpp-python offers a web server which aims to act as a drop-in replacement for the OpenAI API. This allows you to use llama.cpp compatible models with any OpenAI compatible client (language libraries, services, etc).

To install the server package and get started:
```bash
pip install llama-cpp-python[server]
python3 -m llama_cpp.server --model kagentlms_qwen_7b_mat_gguf/ggml-model-q4_0.gguf --chat_format chatml --port 8888
```

Finally, you can use the curl command to invoke the model same as the OpenAI calling format. Here's an example:
```bash
curl http://localhost:8888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{"messages": [{"role": "user", "content": "Who is Andy Lau"}]}'
```

## Citation
```
@article{pan2023kwaiagents,
  author    = {Haojie Pan and
               Zepeng Zhai and
               Hao Yuan and
               Yaojia Lv and
               Ruiji Fu and
               Ming Liu and
               Zhongyuan Wang and
               Bing Qin
               },
  title     = {KwaiAgents: Generalized Information-seeking Agent System with Large Language Models},
  journal   = {CoRR},
  volume    = {abs/2312.04889},
  year      = {2023}
}
```