Text-to-Image
Diffusers
stable-diffusion
File size: 10,276 Bytes
634f932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import torch
import pytorch_lightning as pl
from omegaconf import OmegaConf
from torch.nn import functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from copy import deepcopy
from einops import rearrange
from glob import glob
from natsort import natsorted

from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config

__models__ = {
    'class_label': EncoderUNetModel,
    'segmentation': UNetModel
}


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


class NoisyLatentImageClassifier(pl.LightningModule):

    def __init__(self,
                 diffusion_path,
                 num_classes,
                 ckpt_path=None,
                 pool='attention',
                 label_key=None,
                 diffusion_ckpt_path=None,
                 scheduler_config=None,
                 weight_decay=1.e-2,
                 log_steps=10,
                 monitor='val/loss',
                 *args,
                 **kwargs):
        super().__init__(*args, **kwargs)
        self.num_classes = num_classes
        # get latest config of diffusion model
        diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
        self.diffusion_config = OmegaConf.load(diffusion_config).model
        self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
        self.load_diffusion()

        self.monitor = monitor
        self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
        self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
        self.log_steps = log_steps

        self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
            else self.diffusion_model.cond_stage_key

        assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'

        if self.label_key not in __models__:
            raise NotImplementedError()

        self.load_classifier(ckpt_path, pool)

        self.scheduler_config = scheduler_config
        self.use_scheduler = self.scheduler_config is not None
        self.weight_decay = weight_decay

    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
        sd = torch.load(path, map_location="cpu")
        if "state_dict" in list(sd.keys()):
            sd = sd["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
            sd, strict=False)
        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
        if len(missing) > 0:
            print(f"Missing Keys: {missing}")
        if len(unexpected) > 0:
            print(f"Unexpected Keys: {unexpected}")

    def load_diffusion(self):
        model = instantiate_from_config(self.diffusion_config)
        self.diffusion_model = model.eval()
        self.diffusion_model.train = disabled_train
        for param in self.diffusion_model.parameters():
            param.requires_grad = False

    def load_classifier(self, ckpt_path, pool):
        model_config = deepcopy(self.diffusion_config.params.unet_config.params)
        model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
        model_config.out_channels = self.num_classes
        if self.label_key == 'class_label':
            model_config.pool = pool

        self.model = __models__[self.label_key](**model_config)
        if ckpt_path is not None:
            print('#####################################################################')
            print(f'load from ckpt "{ckpt_path}"')
            print('#####################################################################')
            self.init_from_ckpt(ckpt_path)

    @torch.no_grad()
    def get_x_noisy(self, x, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x))
        continuous_sqrt_alpha_cumprod = None
        if self.diffusion_model.use_continuous_noise:
            continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
            # todo: make sure t+1 is correct here

        return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
                                             continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)

    def forward(self, x_noisy, t, *args, **kwargs):
        return self.model(x_noisy, t)

    @torch.no_grad()
    def get_input(self, batch, k):
        x = batch[k]
        if len(x.shape) == 3:
            x = x[..., None]
        x = rearrange(x, 'b h w c -> b c h w')
        x = x.to(memory_format=torch.contiguous_format).float()
        return x

    @torch.no_grad()
    def get_conditioning(self, batch, k=None):
        if k is None:
            k = self.label_key
        assert k is not None, 'Needs to provide label key'

        targets = batch[k].to(self.device)

        if self.label_key == 'segmentation':
            targets = rearrange(targets, 'b h w c -> b c h w')
            for down in range(self.numd):
                h, w = targets.shape[-2:]
                targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')

            # targets = rearrange(targets,'b c h w -> b h w c')

        return targets

    def compute_top_k(self, logits, labels, k, reduction="mean"):
        _, top_ks = torch.topk(logits, k, dim=1)
        if reduction == "mean":
            return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
        elif reduction == "none":
            return (top_ks == labels[:, None]).float().sum(dim=-1)

    def on_train_epoch_start(self):
        # save some memory
        self.diffusion_model.model.to('cpu')

    @torch.no_grad()
    def write_logs(self, loss, logits, targets):
        log_prefix = 'train' if self.training else 'val'
        log = {}
        log[f"{log_prefix}/loss"] = loss.mean()
        log[f"{log_prefix}/acc@1"] = self.compute_top_k(
            logits, targets, k=1, reduction="mean"
        )
        log[f"{log_prefix}/acc@5"] = self.compute_top_k(
            logits, targets, k=5, reduction="mean"
        )

        self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
        self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
        self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
        lr = self.optimizers().param_groups[0]['lr']
        self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)

    def shared_step(self, batch, t=None):
        x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
        targets = self.get_conditioning(batch)
        if targets.dim() == 4:
            targets = targets.argmax(dim=1)
        if t is None:
            t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
        else:
            t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
        x_noisy = self.get_x_noisy(x, t)
        logits = self(x_noisy, t)

        loss = F.cross_entropy(logits, targets, reduction='none')

        self.write_logs(loss.detach(), logits.detach(), targets.detach())

        loss = loss.mean()
        return loss, logits, x_noisy, targets

    def training_step(self, batch, batch_idx):
        loss, *_ = self.shared_step(batch)
        return loss

    def reset_noise_accs(self):
        self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
                          range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}

    def on_validation_start(self):
        self.reset_noise_accs()

    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        loss, *_ = self.shared_step(batch)

        for t in self.noisy_acc:
            _, logits, _, targets = self.shared_step(batch, t)
            self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
            self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))

        return loss

    def configure_optimizers(self):
        optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)

        if self.use_scheduler:
            scheduler = instantiate_from_config(self.scheduler_config)

            print("Setting up LambdaLR scheduler...")
            scheduler = [
                {
                    'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
                    'interval': 'step',
                    'frequency': 1
                }]
            return [optimizer], scheduler

        return optimizer

    @torch.no_grad()
    def log_images(self, batch, N=8, *args, **kwargs):
        log = dict()
        x = self.get_input(batch, self.diffusion_model.first_stage_key)
        log['inputs'] = x

        y = self.get_conditioning(batch)

        if self.label_key == 'class_label':
            y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
            log['labels'] = y

        if ismap(y):
            log['labels'] = self.diffusion_model.to_rgb(y)

            for step in range(self.log_steps):
                current_time = step * self.log_time_interval

                _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)

                log[f'inputs@t{current_time}'] = x_noisy

                pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
                pred = rearrange(pred, 'b h w c -> b c h w')

                log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)

        for key in log:
            log[key] = log[key][:N]

        return log