File size: 5,807 Bytes
634f932 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os, sys
import numpy as np
import scann
import argparse
import glob
from multiprocessing import cpu_count
from tqdm import tqdm
from ldm.util import parallel_data_prefetch
def search_bruteforce(searcher):
return searcher.score_brute_force().build()
def search_partioned_ah(searcher, dims_per_block, aiq_threshold, reorder_k,
partioning_trainsize, num_leaves, num_leaves_to_search):
return searcher.tree(num_leaves=num_leaves,
num_leaves_to_search=num_leaves_to_search,
training_sample_size=partioning_trainsize). \
score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(reorder_k).build()
def search_ah(searcher, dims_per_block, aiq_threshold, reorder_k):
return searcher.score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(
reorder_k).build()
def load_datapool(dpath):
def load_single_file(saved_embeddings):
compressed = np.load(saved_embeddings)
database = {key: compressed[key] for key in compressed.files}
return database
def load_multi_files(data_archive):
database = {key: [] for key in data_archive[0].files}
for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'):
for key in d.files:
database[key].append(d[key])
return database
print(f'Load saved patch embedding from "{dpath}"')
file_content = glob.glob(os.path.join(dpath, '*.npz'))
if len(file_content) == 1:
data_pool = load_single_file(file_content[0])
elif len(file_content) > 1:
data = [np.load(f) for f in file_content]
prefetched_data = parallel_data_prefetch(load_multi_files, data,
n_proc=min(len(data), cpu_count()), target_data_type='dict')
data_pool = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in prefetched_data[0].keys()}
else:
raise ValueError(f'No npz-files in specified path "{dpath}" is this directory existing?')
print(f'Finished loading of retrieval database of length {data_pool["embedding"].shape[0]}.')
return data_pool
def train_searcher(opt,
metric='dot_product',
partioning_trainsize=None,
reorder_k=None,
# todo tune
aiq_thld=0.2,
dims_per_block=2,
num_leaves=None,
num_leaves_to_search=None,):
data_pool = load_datapool(opt.database)
k = opt.knn
if not reorder_k:
reorder_k = 2 * k
# normalize
# embeddings =
searcher = scann.scann_ops_pybind.builder(data_pool['embedding'] / np.linalg.norm(data_pool['embedding'], axis=1)[:, np.newaxis], k, metric)
pool_size = data_pool['embedding'].shape[0]
print(*(['#'] * 100))
print('Initializing scaNN searcher with the following values:')
print(f'k: {k}')
print(f'metric: {metric}')
print(f'reorder_k: {reorder_k}')
print(f'anisotropic_quantization_threshold: {aiq_thld}')
print(f'dims_per_block: {dims_per_block}')
print(*(['#'] * 100))
print('Start training searcher....')
print(f'N samples in pool is {pool_size}')
# this reflects the recommended design choices proposed at
# https://github.com/google-research/google-research/blob/aca5f2e44e301af172590bb8e65711f0c9ee0cfd/scann/docs/algorithms.md
if pool_size < 2e4:
print('Using brute force search.')
searcher = search_bruteforce(searcher)
elif 2e4 <= pool_size and pool_size < 1e5:
print('Using asymmetric hashing search and reordering.')
searcher = search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
else:
print('Using using partioning, asymmetric hashing search and reordering.')
if not partioning_trainsize:
partioning_trainsize = data_pool['embedding'].shape[0] // 10
if not num_leaves:
num_leaves = int(np.sqrt(pool_size))
if not num_leaves_to_search:
num_leaves_to_search = max(num_leaves // 20, 1)
print('Partitioning params:')
print(f'num_leaves: {num_leaves}')
print(f'num_leaves_to_search: {num_leaves_to_search}')
# self.searcher = self.search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
searcher = search_partioned_ah(searcher, dims_per_block, aiq_thld, reorder_k,
partioning_trainsize, num_leaves, num_leaves_to_search)
print('Finish training searcher')
searcher_savedir = opt.target_path
os.makedirs(searcher_savedir, exist_ok=True)
searcher.serialize(searcher_savedir)
print(f'Saved trained searcher under "{searcher_savedir}"')
if __name__ == '__main__':
sys.path.append(os.getcwd())
parser = argparse.ArgumentParser()
parser.add_argument('--database',
'-d',
default='data/rdm/retrieval_databases/openimages',
type=str,
help='path to folder containing the clip feature of the database')
parser.add_argument('--target_path',
'-t',
default='data/rdm/searchers/openimages',
type=str,
help='path to the target folder where the searcher shall be stored.')
parser.add_argument('--knn',
'-k',
default=20,
type=int,
help='number of nearest neighbors, for which the searcher shall be optimized')
opt, _ = parser.parse_known_args()
train_searcher(opt,) |