|
model: |
|
base_learning_rate: 5.0e-5 |
|
target: ldm.models.diffusion.ddpm.LatentDiffusion |
|
params: |
|
linear_start: 0.0015 |
|
linear_end: 0.0155 |
|
num_timesteps_cond: 1 |
|
log_every_t: 200 |
|
timesteps: 1000 |
|
loss_type: l1 |
|
first_stage_key: "image" |
|
cond_stage_key: "image" |
|
image_size: 32 |
|
channels: 4 |
|
cond_stage_trainable: False |
|
concat_mode: False |
|
scale_by_std: True |
|
monitor: 'val/loss_simple_ema' |
|
|
|
scheduler_config: |
|
target: ldm.lr_scheduler.LambdaLinearScheduler |
|
params: |
|
warm_up_steps: [10000] |
|
cycle_lengths: [10000000000000] |
|
f_start: [1.e-6] |
|
f_max: [1.] |
|
f_min: [ 1.] |
|
|
|
unet_config: |
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel |
|
params: |
|
image_size: 32 |
|
in_channels: 4 |
|
out_channels: 4 |
|
model_channels: 192 |
|
attention_resolutions: [ 1, 2, 4, 8 ] |
|
num_res_blocks: 2 |
|
channel_mult: [ 1,2,2,4,4 ] |
|
num_heads: 8 |
|
use_scale_shift_norm: True |
|
resblock_updown: True |
|
|
|
first_stage_config: |
|
target: ldm.models.autoencoder.AutoencoderKL |
|
params: |
|
embed_dim: 4 |
|
monitor: "val/rec_loss" |
|
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt" |
|
ddconfig: |
|
double_z: True |
|
z_channels: 4 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: [ 1,2,4,4 ] |
|
num_res_blocks: 2 |
|
attn_resolutions: [ ] |
|
dropout: 0.0 |
|
lossconfig: |
|
target: torch.nn.Identity |
|
|
|
cond_stage_config: "__is_unconditional__" |
|
|
|
data: |
|
target: main.DataModuleFromConfig |
|
params: |
|
batch_size: 96 |
|
num_workers: 5 |
|
wrap: False |
|
train: |
|
target: ldm.data.lsun.LSUNChurchesTrain |
|
params: |
|
size: 256 |
|
validation: |
|
target: ldm.data.lsun.LSUNChurchesValidation |
|
params: |
|
size: 256 |
|
|
|
lightning: |
|
callbacks: |
|
image_logger: |
|
target: main.ImageLogger |
|
params: |
|
batch_frequency: 5000 |
|
max_images: 8 |
|
increase_log_steps: False |
|
|
|
|
|
trainer: |
|
benchmark: True |