import argparse, os, sys, glob import cv2 import torch import numpy as np from omegaconf import OmegaConf from PIL import Image from tqdm import tqdm, trange #from imwatermark import WatermarkEncoder from itertools import islice from einops import rearrange from torchvision.utils import make_grid import time from pytorch_lightning import seed_everything from torch import autocast from contextlib import contextmanager, nullcontext from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from transformers import AutoFeatureExtractor # DON'T load safety model #safety_model_id = "CompVis/stable-diffusion-safety-checker" #safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) #safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def numpy_to_pil(images): """ Convert a numpy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.cuda() model.eval() return model def put_watermark(img, wm_encoder=None): if wm_encoder is not None: img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) img = wm_encoder.encode(img, 'dwtDct') img = Image.fromarray(img[:, :, ::-1]) return img def load_replacement(x): try: hwc = x.shape y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0])) y = (np.array(y)/255.0).astype(x.dtype) assert y.shape == x.shape return y except Exception: return x def check_safety(x_image): safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) assert x_checked_image.shape[0] == len(has_nsfw_concept) for i in range(len(has_nsfw_concept)): if has_nsfw_concept[i]: x_checked_image[i] = load_replacement(x_checked_image[i]) return x_checked_image, has_nsfw_concept def main(): parser = argparse.ArgumentParser() parser.add_argument( "--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render" ) parser.add_argument( "--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples" ) parser.add_argument( "--skip_grid", action='store_true', help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", ) parser.add_argument( "--skip_save", action='store_true', help="do not save individual samples. For speed measurements.", ) parser.add_argument( "--ddim_steps", type=int, default=50, help="number of ddim sampling steps", ) parser.add_argument( "--plms", action='store_true', help="use plms sampling", ) parser.add_argument( "--laion400m", action='store_true', help="uses the LAION400M model", ) parser.add_argument( "--fixed_code", action='store_true', help="if enabled, uses the same starting code across samples ", ) parser.add_argument( "--ddim_eta", type=float, default=0.0, help="ddim eta (eta=0.0 corresponds to deterministic sampling", ) parser.add_argument( "--n_iter", type=int, default=2, help="sample this often", ) parser.add_argument( "--H", type=int, default=512, help="image height, in pixel space", ) parser.add_argument( "--W", type=int, default=512, help="image width, in pixel space", ) parser.add_argument( "--C", type=int, default=4, help="latent channels", ) parser.add_argument( "--f", type=int, default=8, help="downsampling factor", ) parser.add_argument( "--n_samples", type=int, default=3, help="how many samples to produce for each given prompt. A.k.a. batch size", ) parser.add_argument( "--n_rows", type=int, default=0, help="rows in the grid (default: n_samples)", ) parser.add_argument( "--scale", type=float, default=7.5, help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", ) parser.add_argument( "--from-file", type=str, help="if specified, load prompts from this file", ) parser.add_argument( "--config", type=str, default="configs/stable-diffusion/v1-inference.yaml", help="path to config which constructs model", ) parser.add_argument( "--ckpt", type=str, default="models/ldm/stable-diffusion-v1/model.ckpt", help="path to checkpoint of model", ) parser.add_argument( "--seed", type=int, default=42, help="the seed (for reproducible sampling)", ) parser.add_argument( "--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast" ) opt = parser.parse_args() if opt.laion400m: print("Falling back to LAION 400M model...") opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml" opt.ckpt = "models/ldm/text2img-large/model.ckpt" opt.outdir = "outputs/txt2img-samples-laion400m" seed_everything(opt.seed) config = OmegaConf.load(f"{opt.config}") model = load_model_from_config(config, f"{opt.ckpt}") device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) if opt.plms: sampler = PLMSSampler(model) else: sampler = DDIMSampler(model) os.makedirs(opt.outdir, exist_ok=True) outpath = opt.outdir print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") wm = "StableDiffusionV1" #wm_encoder = WatermarkEncoder() #wm_encoder.set_watermark('bytes', wm.encode('utf-8')) batch_size = opt.n_samples n_rows = opt.n_rows if opt.n_rows > 0 else batch_size if not opt.from_file: prompt = opt.prompt assert prompt is not None data = [batch_size * [prompt]] else: print(f"reading prompts from {opt.from_file}") with open(opt.from_file, "r") as f: data = f.read().splitlines() data = list(chunk(data, batch_size)) sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) base_count = len(os.listdir(sample_path)) grid_count = len(os.listdir(outpath)) - 1 start_code = None if opt.fixed_code: start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) precision_scope = autocast if opt.precision=="autocast" else nullcontext with torch.no_grad(): with precision_scope("cuda"): with model.ema_scope(): tic = time.time() all_samples = list() for n in trange(opt.n_iter, desc="Sampling"): for prompts in tqdm(data, desc="data"): uc = None if opt.scale != 1.0: uc = model.get_learned_conditioning(batch_size * [""]) if isinstance(prompts, tuple): prompts = list(prompts) c = model.get_learned_conditioning(prompts) shape = [opt.C, opt.H // opt.f, opt.W // opt.f] samples_ddim, _ = sampler.sample(S=opt.ddim_steps, conditioning=c, batch_size=opt.n_samples, shape=shape, verbose=False, unconditional_guidance_scale=opt.scale, unconditional_conditioning=uc, eta=opt.ddim_eta, x_T=start_code) x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() x_checked_image = x_samples_ddim x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) if not opt.skip_save: for x_sample in x_checked_image_torch: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') img = Image.fromarray(x_sample.astype(np.uint8)) #img = put_watermark(img, wm_encoder) img.save(os.path.join(sample_path, f"{base_count:05}.png")) base_count += 1 if not opt.skip_grid: all_samples.append(x_checked_image_torch) if not opt.skip_grid: # additionally, save as grid grid = torch.stack(all_samples, 0) grid = rearrange(grid, 'n b c h w -> (n b) c h w') grid = make_grid(grid, nrow=n_rows) # to image grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() img = Image.fromarray(grid.astype(np.uint8)) img = put_watermark(img, wm_encoder) img.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) grid_count += 1 toc = time.time() print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.") if __name__ == "__main__": main()