--- library_name: transformers license: other base_model: nvidia/Minitron-4B-Base tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - allenai/tulu-v2-sft-mixture model-index: - name: minitron-4b-tulu-v2-mix results: [] --- # minitron-4b-tulu-v2-mix This model is a fine-tuned version of [nvidia/Minitron-4B-Base](https://huggingface.co/nvidia/Minitron-4B-Base) on the allenai/tulu-v2-sft-mixture dataset. It achieves the following results on the evaluation set: - Loss: 1.1978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0088 | 5 | 1.1978 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.19.1