--- library_name: transformers license: apache-2.0 base_model: kykim0/pythia-1b-tulu-v2-mix tags: - generated_from_trainer datasets: - allenai/ultrafeedback_binarized_cleaned metrics: - accuracy model-index: - name: b32-lr1.41e-05-s0-e2-btbinf-seed42 results: - task: name: Text Classification type: text-classification dataset: name: allenai/ultrafeedback_binarized_cleaned type: allenai/ultrafeedback_binarized_cleaned metrics: - name: Accuracy type: accuracy value: 0.7427109974424553 --- # b32-lr1.41e-05-s0-e2-btbinf-seed42 This model is a fine-tuned version of [kykim0/pythia-1b-tulu-v2-mix](https://huggingface.co/kykim0/pythia-1b-tulu-v2-mix) on the allenai/ultrafeedback_binarized_cleaned dataset. It achieves the following results on the evaluation set: - Loss: 0.5040 - Accuracy: 0.7458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6627 | 0.0527 | 100 | 0.6306 | 0.6675 | | 0.5604 | 0.1055 | 200 | 0.5954 | 0.6890 | | 0.5743 | 0.1582 | 300 | 0.5773 | 0.6880 | | 0.573 | 0.2110 | 400 | 0.5408 | 0.7182 | | 0.5644 | 0.2637 | 500 | 0.5285 | 0.7361 | | 0.5482 | 0.3165 | 600 | 0.5251 | 0.7366 | | 0.5673 | 0.3692 | 700 | 0.5267 | 0.7279 | | 0.5701 | 0.4219 | 800 | 0.5123 | 0.7453 | | 0.5199 | 0.4747 | 900 | 0.5148 | 0.7376 | | 0.5525 | 0.5274 | 1000 | 0.5133 | 0.7494 | | 0.5197 | 0.5802 | 1100 | 0.5085 | 0.7488 | | 0.4977 | 0.6329 | 1200 | 0.5146 | 0.7412 | | 0.492 | 0.6857 | 1300 | 0.5116 | 0.7417 | | 0.5046 | 0.7384 | 1400 | 0.5069 | 0.7453 | | 0.5476 | 0.7911 | 1500 | 0.5044 | 0.7478 | | 0.5247 | 0.8439 | 1600 | 0.5038 | 0.7468 | | 0.5591 | 0.8966 | 1700 | 0.5079 | 0.7453 | | 0.5228 | 0.9494 | 1800 | 0.5040 | 0.7458 | | 0.5336 | 1.0021 | 1900 | 0.5045 | 0.7488 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1