--- library_name: transformers license: apache-2.0 base_model: kykim0/pythia-1b-tulu-v2-mix-nos tags: - trl - reward-trainer - generated_from_trainer datasets: - allenai/ultrafeedback_binarized_cleaned metrics: - accuracy model-index: - name: pythia-1b-tulu-v2-mix-nos-rm results: - task: name: Text Classification type: text-classification dataset: name: allenai/ultrafeedback_binarized_cleaned type: allenai/ultrafeedback_binarized_cleaned metrics: - name: Accuracy type: accuracy value: 0.7457800511508952 --- # pythia-1b-tulu-v2-mix-nos-rm This model is a fine-tuned version of [kykim0/pythia-1b-tulu-v2-mix-nos](https://huggingface.co/kykim0/pythia-1b-tulu-v2-mix-nos) on the allenai/ultrafeedback_binarized_cleaned dataset. It achieves the following results on the evaluation set: - Loss: 0.5227 - Accuracy: 0.7458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5749 | 0.0527 | 100 | 0.5849 | 0.6900 | | 0.5873 | 0.1055 | 200 | 0.5581 | 0.7100 | | 0.5599 | 0.1582 | 300 | 0.5470 | 0.7212 | | 0.5456 | 0.2109 | 400 | 0.5379 | 0.7258 | | 0.521 | 0.2637 | 500 | 0.5358 | 0.7294 | | 0.5361 | 0.3164 | 600 | 0.5363 | 0.7376 | | 0.5662 | 0.3691 | 700 | 0.5270 | 0.7412 | | 0.5301 | 0.4219 | 800 | 0.5268 | 0.7427 | | 0.5661 | 0.4746 | 900 | 0.5301 | 0.7381 | | 0.5608 | 0.5274 | 1000 | 0.5242 | 0.7437 | | 0.5223 | 0.5801 | 1100 | 0.5242 | 0.7422 | | 0.5322 | 0.6328 | 1200 | 0.5249 | 0.7448 | | 0.4891 | 0.6856 | 1300 | 0.5241 | 0.7427 | | 0.5111 | 0.7383 | 1400 | 0.5234 | 0.7437 | | 0.5145 | 0.7910 | 1500 | 0.5225 | 0.7422 | | 0.4746 | 0.8438 | 1600 | 0.5226 | 0.7458 | | 0.5551 | 0.8965 | 1700 | 0.5223 | 0.7448 | | 0.563 | 0.9492 | 1800 | 0.5222 | 0.7453 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1