File size: 6,936 Bytes
da2cc33
 
 
 
 
 
 
b9a01d2
 
d6b7b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da2cc33
 
b9a01d2
 
 
 
fecb0e4
b9a01d2
5cedc2d
da2cc33
1abb923
 
 
 
 
 
 
 
 
 
b9a01d2
 
 
 
 
 
 
 
 
da2cc33
1d90b96
 
1abb923
1d90b96
 
 
 
 
 
 
 
27c46f3
1d90b96
 
27c46f3
1d90b96
 
 
 
 
 
 
 
 
 
 
 
 
da2cc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: cc-by-4.0
language: bn
widget:
- source_sentence: "লোকটি কুড়াল দিয়ে একটি গাছ কেটে ফেলল"
  sentences:
    - "একজন লোক কুড়াল দিয়ে একটি গাছের নিচে চপ করে" 
    - "একজন লোক গিটার বাজছে"
    - "একজন মহিলা ঘোড়ায় চড়ে"
  example_title: "Example 1"

- source_sentence: "একটি গোলাপী সাইকেল একটি বিল্ডিংয়ের সামনে রয়েছে"
  sentences:
    - "কিছু ধ্বংসাবশেষের সামনে একটি সাইকেল"
    - "গোলাপী দুটি ছোট মেয়ে নাচছে"
    - "ভেড়া গাছের লাইনের সামনে মাঠে চারণ করছে"
  example_title: "Example 2"

- source_sentence: "আলোর গতি সসীম হওয়ার গতি আমাদের মহাবিশ্বের অন্যতম মৌলিক"
  sentences:
    - "আলোর গতি কত?"
    - "আলোর গতি সসীম"
    - "আলো মহাবিশ্বের দ্রুততম জিনিস"
  example_title: "Example 3"
---

# BengaliSBERT

This is a BengaliBERT model (l3cube-pune/bengali-bert) trained on the NLI dataset. <br>
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
A multilingual version of this model supporting major Indic languages and cross-lingual capabilities is shared here <a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'> indic-sentence-bert-nli </a> <br>

A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/bengali-sentence-similarity-sbert <br>

More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2304.11434) 

```
@article{deode2023l3cube,
  title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
  author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2304.11434},
  year={2023}
}
```

```
@article{joshi2022l3cubemahasbert,
  title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
  author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2211.11187},
  year={2022}
}
```

<a href='https://arxiv.org/abs/2211.11187'> monolingual Indic SBERT paper </a> <br>
<a href='https://arxiv.org/abs/2304.11434'> multilingual Indic SBERT paper </a>

Other Monolingual Indic sentence BERT models are listed below: <br>
<a href='https://huggingface.co/l3cube-pune/marathi-sentence-bert-nli'> Marathi SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/hindi-sentence-bert-nli'> Hindi SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/kannada-sentence-bert-nli'> Kannada SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/telugu-sentence-bert-nli'> Telugu SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/malayalam-sentence-bert-nli'> Malayalam SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/tamil-sentence-bert-nli'> Tamil SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/gujarati-sentence-bert-nli'> Gujarati SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/odia-sentence-bert-nli'> Oriya SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/bengali-sentence-bert-nli'> Bengali SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/punjabi-sentence-bert-nli'> Punjabi SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'> Indic SBERT (multilingual)</a> <br>

Other Monolingual similarity models are listed below: <br>
<a href='https://huggingface.co/l3cube-pune/marathi-sentence-similarity-sbert'> Marathi Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/hindi-sentence-similarity-sbert'> Hindi Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/kannada-sentence-similarity-sbert'> Kannada Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/telugu-sentence-similarity-sbert'> Telugu Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/malayalam-sentence-similarity-sbert'> Malayalam Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/tamil-sentence-similarity-sbert'> Tamil Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/gujarati-sentence-similarity-sbert'> Gujarati Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/odia-sentence-similarity-sbert'> Oriya Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/bengali-sentence-similarity-sbert'> Bengali Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/punjabi-sentence-similarity-sbert'> Punjabi Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert'> Indic Similarity (multilingual)</a> <br>

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


def cls_pooling(model_output, attention_mask):
    return model_output[0][:,0]


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```