l3cube-pune
commited on
Commit
·
3099117
1
Parent(s):
950ea18
Update README.md
Browse files
README.md
CHANGED
@@ -5,10 +5,14 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -71,56 +75,6 @@ print("Sentence embeddings:")
|
|
71 |
print(sentence_embeddings)
|
72 |
```
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
## Evaluation Results
|
77 |
-
|
78 |
-
<!--- Describe how your model was evaluated -->
|
79 |
-
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
-
|
82 |
-
|
83 |
-
## Training
|
84 |
-
The model was trained with the parameters:
|
85 |
-
|
86 |
-
**DataLoader**:
|
87 |
-
|
88 |
-
`torch.utils.data.dataloader.DataLoader` of length 719 with parameters:
|
89 |
-
```
|
90 |
-
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
-
```
|
92 |
-
|
93 |
-
**Loss**:
|
94 |
-
|
95 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
96 |
-
|
97 |
-
Parameters of the fit()-Method:
|
98 |
-
```
|
99 |
-
{
|
100 |
-
"epochs": 4,
|
101 |
-
"evaluation_steps": 0,
|
102 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
103 |
-
"max_grad_norm": 1,
|
104 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
105 |
-
"optimizer_params": {
|
106 |
-
"lr": 2e-05
|
107 |
-
},
|
108 |
-
"scheduler": "WarmupLinear",
|
109 |
-
"steps_per_epoch": null,
|
110 |
-
"warmup_steps": 287,
|
111 |
-
"weight_decay": 0.01
|
112 |
-
}
|
113 |
-
```
|
114 |
-
|
115 |
-
|
116 |
-
## Full Model Architecture
|
117 |
-
```
|
118 |
-
SentenceTransformer(
|
119 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
120 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
-
)
|
122 |
-
```
|
123 |
-
|
124 |
## Citing & Authors
|
125 |
|
126 |
-
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
license: cc-by-4.0
|
9 |
+
language: hi
|
10 |
---
|
11 |
|
12 |
+
# HindSBERT
|
13 |
+
|
14 |
+
This is a HindBERT model (l3cube-pune/hindi-bert-v2) fine-tuned on the STS dataset.
|
15 |
+
Released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP
|
16 |
|
17 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
18 |
|
|
|
75 |
print(sentence_embeddings)
|
76 |
```
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
## Citing & Authors
|
79 |
|
80 |
+
This will be updated soon, refer to the project page for now.
|