--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: cc-by-4.0 language: hi widget: - source_sentence: "एक आदमी एक रस्सी पर चढ़ रहा है" sentences: - "एक आदमी एक रस्सी पर चढ़ता है" - "एक आदमी एक दीवार पर चढ़ रहा है" - "एक आदमी बांसुरी बजाता है" example_title: "Example 1" - source_sentence: "कुछ लोग गा रहे हैं" sentences: - "लोगों का एक समूह गाता है" - "बिल्ली दूध पी रही है" - "दो आदमी लड़ रहे हैं" example_title: "Example 2" - source_sentence: "फेडरर ने 7वां विंबलडन खिताब जीत लिया है" sentences: - "फेडरर अपने करियर में कुल 20 ग्रैंडस्लैम खिताब जीत चुके है " - "फेडरर ने सितंबर में अपने निवृत्ति की घोषणा की" - "एक आदमी कुछ खाना पकाने का तेल एक बर्तन में डालता है" example_title: "Example 3" --- # HindSBERT-STS This is a HindSBERT model ( l3cube-pune/hindi-sentence-bert-nli ) fine-tuned on the STS dataset.
Released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP
A multilingual version of this model supporting major Indic languages and cross-lingual sentence similarity is shared here indic-sentence-similarity-sbert
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187) ``` @article{joshi2022l3cubemahasbert, title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi}, author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11187}, year={2022} } ``` Other Monolingual similarity models are listed below:
Marathi
Hindi
Kannada
Telugu
Malayalam
Tamil
Gujarati
Oriya
Bengali
Punjabi
monolingual paper
multilingual paper This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ```