l3cube-pune
commited on
Commit
·
bcc1c2f
1
Parent(s):
d3fe12c
Update model files
Browse files- README.md +62 -58
- config_sentence_transformers.json +2 -2
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -5,67 +5,14 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
language:
|
9 |
-
- multilingual
|
10 |
-
- hi
|
11 |
-
- mr
|
12 |
-
- kn
|
13 |
-
- ta
|
14 |
-
- te
|
15 |
-
- ml
|
16 |
-
- gu
|
17 |
-
- or
|
18 |
-
- pa
|
19 |
-
- bn
|
20 |
-
widget:
|
21 |
-
- source_sentence: दिवाळी आपण मोठ्या उत्साहाने साजरी करतो
|
22 |
-
sentences:
|
23 |
-
- दिवाळी आपण आनंदाने साजरी करतो
|
24 |
-
- दिवाळी हा दिव्यांचा सण आहे
|
25 |
-
example_title: Monolingual- Marathi
|
26 |
-
- source_sentence: हम दीपावली उत्साह के साथ मनाते हैं
|
27 |
-
sentences:
|
28 |
-
- हम दीपावली खुशियों से मनाते हैं
|
29 |
-
- दिवाली रोशनी का त्योहार है
|
30 |
-
example_title: Monolingual- Hindi
|
31 |
-
- source_sentence: અમે ઉત્સાહથી દિવાળી ઉજવીએ છીએ
|
32 |
-
sentences:
|
33 |
-
- દિવાળી આપણે ખુશીઓથી ઉજવીએ છીએ
|
34 |
-
- દિવાળી એ રોશનીનો તહેવાર છે
|
35 |
-
example_title: Monolingual- Gujarati
|
36 |
-
- source_sentence: आम्हाला भारतीय असल्याचा अभिमान आहे
|
37 |
-
sentences:
|
38 |
-
- हमें भारतीय होने पर गर्व है
|
39 |
-
- భారతీయులమైనందుకు గర్విస్తున్నాం
|
40 |
-
- અમને ભારતીય હોવાનો ગર્વ છે
|
41 |
-
example_title: Cross-lingual 1
|
42 |
-
- source_sentence: ਬਾਰਿਸ਼ ਤੋਂ ਬਾਅਦ ਬਗੀਚਾ ਸੁੰਦਰ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ
|
43 |
-
sentences:
|
44 |
-
- മഴയ്ക്ക് ശേഷം പൂന്തോട്ടം മനോഹരമായി കാണപ്പെടുന്നു
|
45 |
-
- ବର୍ଷା ପରେ ବଗିଚା ସୁନ୍ଦର ଦେଖାଯାଏ |
|
46 |
-
- बारिश के बाद बगीचा सुंदर दिखता है
|
47 |
-
example_title: Cross-lingual 2
|
48 |
-
---
|
49 |
-
|
50 |
-
# IndicSBERT
|
51 |
|
52 |
-
|
53 |
-
The single model works for Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
|
54 |
-
The model also has cross-lingual capabilities. <br>
|
55 |
-
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
@article{joshi2022l3cubemahasbert,
|
63 |
-
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
|
64 |
-
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
|
65 |
-
journal={arXiv preprint arXiv:2211.11187},
|
66 |
-
year={2022}
|
67 |
-
}
|
68 |
-
```
|
69 |
|
70 |
## Usage (Sentence-Transformers)
|
71 |
|
@@ -122,4 +69,61 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
122 |
|
123 |
print("Sentence embeddings:")
|
124 |
print(sentence_embeddings)
|
125 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
---
|
|
|
|
|
|
|
10 |
|
11 |
+
# {MODEL_NAME}
|
12 |
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
15 |
+
<!--- Describe your model here -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
18 |
|
|
|
69 |
|
70 |
print("Sentence embeddings:")
|
71 |
print(sentence_embeddings)
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
## Evaluation Results
|
77 |
+
|
78 |
+
<!--- Describe how your model was evaluated -->
|
79 |
+
|
80 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
+
|
82 |
+
|
83 |
+
## Training
|
84 |
+
The model was trained with the parameters:
|
85 |
+
|
86 |
+
**DataLoader**:
|
87 |
+
|
88 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 88058 with parameters:
|
89 |
+
```
|
90 |
+
{'batch_size': 32}
|
91 |
+
```
|
92 |
+
|
93 |
+
**Loss**:
|
94 |
+
|
95 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
96 |
+
```
|
97 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
98 |
+
```
|
99 |
+
|
100 |
+
Parameters of the fit()-Method:
|
101 |
+
```
|
102 |
+
{
|
103 |
+
"epochs": 1,
|
104 |
+
"evaluation_steps": 0,
|
105 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
106 |
+
"max_grad_norm": 1,
|
107 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
108 |
+
"optimizer_params": {
|
109 |
+
"lr": 2e-05
|
110 |
+
},
|
111 |
+
"scheduler": "WarmupLinear",
|
112 |
+
"steps_per_epoch": null,
|
113 |
+
"warmup_steps": 8805,
|
114 |
+
"weight_decay": 0.01
|
115 |
+
}
|
116 |
+
```
|
117 |
+
|
118 |
+
|
119 |
+
## Full Model Architecture
|
120 |
+
```
|
121 |
+
SentenceTransformer(
|
122 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
123 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
+
)
|
125 |
+
```
|
126 |
+
|
127 |
+
## Citing & Authors
|
128 |
+
|
129 |
+
<!--- Describe where people can find more information -->
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.2.2",
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "1.13.
|
6 |
}
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.26.1",
|
5 |
+
"pytorch": "1.13.1+cu116"
|
6 |
}
|
7 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 950293293
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a334f3074c87d57afa774c616d9d6e8c80db62c75afbb4b65bfadd63c72a169
|
3 |
size 950293293
|