--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: cc-by-4.0 language: mr widget: - source_sentence: "शेतकऱ्यांचे डोळे आकाशाकडे लागले आहेत" sentences: - "आता शेतकऱ्यांचे डोळे आभाळाकडे लागले आहेत" - "अन्नधान्य उत्पादनासाठी शेतकरी कष्ट करतात" - "शहरात कचऱ्याचे ढीग दिसतात" example_title: "Example 1" - source_sentence: "घटनेची माहिती मिळताच पोलिसांचा ताफा तेथे पोहोचला" sentences: - "पोलिसांना घटनेची माहिती मिळताच त्यांचे पथक घटनास्थळी पोहोचले" - "तेव्हा पोलिसांनी त्यांच्या तक्रारीची दखल घेतली नाही" - "दिवसाचा उत्तरार्ध कुटुंबासोबत मौजमजेत घालवाल" example_title: "Example 2" - source_sentence: "पहिल्या पाच किलोमीटर अंतरासाठी पाच रुपये दर आकारण्यात येत आहे" sentences: - "पाच रुपयांत पाच किमी प्रवास करा" - "दोन ठिकाणांमधले मोठे अंतर प्रवास करणे कंटाळवाणे आहे" - "नुकत्याच झालेल्या पावसामुळे हिरवळ दिसत आहे" example_title: "Example 3" --- # MahaSBERT A MahaBERT model (l3cube-pune/marathi-bert-v2) trained on the NLI dataset.
This is released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP
A multilingual version of this model supporting major Indic languages and cross-lingual capabilities is shared here indic-sentence-bert-nli
A better sentence similarity model(fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/marathi-sentence-similarity-sbert
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187) ``` @article{joshi2022l3cubemahasbert, title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi}, author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11187}, year={2022} } ``` Other Monolingual Indic sentence BERT models are listed below:
Marathi
Hindi
Kannada
Telugu
Malayalam
Tamil
Gujarati
Oriya
Bengali
Punjabi
monolingual paper
multilingual paper This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ```