l3cube-pune commited on
Commit
f061f77
1 Parent(s): 6bc5a15

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -53
README.md CHANGED
@@ -5,10 +5,14 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
9
  ---
10
 
11
- # {MODEL_NAME}
 
 
 
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -71,56 +75,6 @@ print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
73
 
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 719 with parameters:
89
- ```
90
- {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 4,
101
- "evaluation_steps": 0,
102
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 2e-05
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 287,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
  ## Citing & Authors
125
 
126
- <!--- Describe where people can find more information -->
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ license: cc-by-4.0
9
+ language: mr
10
  ---
11
 
12
+ # {MahaSBERT}
13
+
14
+ A MahaBERT model (l3cube-pune/marathi-bert-v2) fine-tuned on STS dataset.
15
+ This is released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP
16
 
17
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
18
 
 
75
  print(sentence_embeddings)
76
  ```
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  ## Citing & Authors
79
 
80
+ Will be updated soon.