l3cube-pune commited on
Commit
b54ba44
1 Parent(s): 2825960

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -61
README.md CHANGED
@@ -5,14 +5,28 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
 
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
14
 
15
- <!--- Describe your model here -->
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -69,61 +83,4 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
69
 
70
  print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
- ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 17225 with parameters:
89
- ```
90
- {'batch_size': 4}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
96
- ```
97
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
98
- ```
99
-
100
- Parameters of the fit()-Method:
101
- ```
102
- {
103
- "epochs": 1,
104
- "evaluation_steps": 0,
105
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
106
- "max_grad_norm": 1,
107
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
108
- "optimizer_params": {
109
- "lr": 2e-05
110
- },
111
- "scheduler": "WarmupLinear",
112
- "steps_per_epoch": null,
113
- "warmup_steps": 1722,
114
- "weight_decay": 0.01
115
- }
116
- ```
117
-
118
-
119
- ## Full Model Architecture
120
- ```
121
- SentenceTransformer(
122
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
123
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
- )
125
- ```
126
-
127
- ## Citing & Authors
128
-
129
- <!--- Describe where people can find more information -->
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ license: cc-by-4.0
9
+ language: pa
10
 
11
  ---
12
 
13
+ # PunjabiSBERT-STS
14
 
15
+ This is a PunjabiBERT model (l3cube-pune/punjabi-bert) trained on the NLI dataset. <br>
16
+ Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
17
 
18
+ A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/punjabi-sentence-similarity-sbert <br>
19
+
20
+ More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
21
+
22
+ ```
23
+ @article{joshi2022l3cubemahasbert,
24
+ title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
25
+ author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
26
+ journal={arXiv preprint arXiv:2211.11187},
27
+ year={2022}
28
+ }
29
+ ```
30
 
31
  ## Usage (Sentence-Transformers)
32
 
 
83
 
84
  print("Sentence embeddings:")
85
  print(sentence_embeddings)
86
+ ```