File size: 5,852 Bytes
b59aa76
 
 
 
 
 
 
2e53f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b59aa76
 
2e53f4e
 
 
 
0af28d7
2e53f4e
 
 
1d01578
 
 
 
 
 
 
 
 
 
b59aa76
2e53f4e
 
 
 
 
 
 
 
b59aa76
1d01578
 
 
 
 
 
 
 
 
 
 
 
 
 
b59aa76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: cc-by-4.0
language: ta
widget:
- source_sentence: "மக்கள் குழு பாடுகிறது"
  sentences:
    - "சிலர் பாடுகிறார்கள்"
    - "ஒரு இளைஞன் பியானோ பாடுகிறான்" 
    - "மனிதன் ஒரு கடிதம் எழுதுகிறான்"
  example_title: "Example 1"

- source_sentence: "நாய் பொம்மையை குரைக்கிறது"
  sentences:
    - "ஒரு நாய் ஒரு பொம்மையில் குரைக்கிறது"
    - "ஒரு பூனை பால் குடிக்கிறது"
    - "ஒரு நாய் ஒரு பந்தைத் துரத்துகிறது"
  example_title: "Example 2"

- source_sentence: "நான் முதல் முறையாக விமானத்தில் அமர்ந்தேன்"
  sentences:
    - "அது எனது முதல் விமானப் பயணம் "
    - "முதல் முறையாக ரயிலில் அமர்ந்தேன்"
    - "புதிய இடங்களுக்கு பயணம் செய்வது எனக்கு மிகவும் பிடிக்கும்"
  example_title: "Example 3"
---

# TamilSBERT

This is a TamilBERT model (l3cube-pune/tamil-bert) trained on the NLI dataset. <br>
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
A multilingual version of this model supporting major Indic languages and cross-lingual capabilities is shared here <a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'> indic-sentence-bert-nli </a> <br>

A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/tamil-sentence-similarity-sbert <br>

More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2304.11434) 

```
@article{deode2023l3cube,
  title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
  author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2304.11434},
  year={2023}
}
```

```
@article{joshi2022l3cubemahasbert,
  title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
  author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2211.11187},
  year={2022}
}
```

Other Monolingual Indic sentence BERT models are listed below: <br>
<a href='https://huggingface.co/l3cube-pune/marathi-sentence-bert-nli'> Marathi </a> <br>
<a href='https://huggingface.co/l3cube-pune/hindi-sentence-bert-nli'> Hindi </a> <br>
<a href='https://huggingface.co/l3cube-pune/kannada-sentence-bert-nli'> Kannada </a> <br>
<a href='https://huggingface.co/l3cube-pune/telugu-sentence-bert-nli'> Telugu </a> <br>
<a href='https://huggingface.co/l3cube-pune/malayalam-sentence-bert-nli'> Malayalam </a> <br>
<a href='https://huggingface.co/l3cube-pune/tamil-sentence-bert-nli'> Tamil </a> <br>
<a href='https://huggingface.co/l3cube-pune/gujarati-sentence-bert-nli'> Gujarati </a> <br>
<a href='https://huggingface.co/l3cube-pune/odia-sentence-bert-nli'> Oriya </a> <br>
<a href='https://huggingface.co/l3cube-pune/bengali-sentence-bert-nli'> Bengali </a> <br>
<a href='https://huggingface.co/l3cube-pune/punjabi-sentence-bert-nli'> Punjabi </a> <br>
<a href='https://arxiv.org/abs/2211.11187'> monolingual paper </a> <br>
<a href='https://arxiv.org/abs/2304.11434'> multilingual paper </a>


## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```