|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
metrics: |
|
- bleu |
|
- rouge |
|
tags: |
|
- causal-lm |
|
- code |
|
- cypher |
|
- graph |
|
- neo4j |
|
inference: false |
|
widget: |
|
- text: "Show me the people who have Python and Cloud skills and have been in the company for at least 3 years." |
|
example_title: "Example 1" |
|
- text: "What is the IMDb rating of Pulp Fiction?" |
|
example_title: "Example 2" |
|
- text: "Display the first 3 users followed by 'Neo4j' who have more than 10000 followers." |
|
example_title: "Example 3" |
|
--- |
|
|
|
## Model Description |
|
|
|
A finetune of https://huggingface.co/stabilityai/stable-code-instruct-3b trained on https://github.com/neo4j-labs/text2cypher/tree/main/datasets/synthetic_opus_demodbs to generate CYPHER statements for GraphDB queries such as neo4j. |
|
|
|
## Usage |
|
|
|
### Safetensors (recommended) |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("lakkeo/stable-cypher-instruct-3b", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("lakkeo/stable-cypher-instruct-3b", torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": "Show me the people who have Python and Cloud skills and have been in the company for at least 3 years." |
|
} |
|
] |
|
|
|
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
inputs = tokenizer([prompt], return_tensors="pt").to(model.device) |
|
|
|
tokens = model.generate( |
|
**inputs, |
|
max_new_tokens=128, |
|
do_sample=True, |
|
top_p=0.9, |
|
temperature=0.2, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
outputs = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=False)[0] |
|
``` |
|
|
|
### GGUF |
|
|
|
```python |
|
from llama_cpp import Llama |
|
|
|
# Load the GGUF model |
|
print("Loading model...") |
|
model = Llama( |
|
model_path=r"C:\Users\John\stable-cypher-instruct-3b.Q4_K_M.gguf", |
|
n_ctx=512, |
|
n_batch=512, |
|
n_gpu_layers=-1, # Use all available GPU layers |
|
max_tokens=128, |
|
top_p=0.9, |
|
temperature=0.2, |
|
verbose=False |
|
) |
|
|
|
# Define your question |
|
question = "Show me the people who have Python and Cloud skills and have been in the company for at least 3 years." |
|
|
|
# Create the full prompt (simulating the apply_chat_template function) |
|
full_prompt = f"<|im_start|>system\nCreate a Cypher statement to answer the following question:<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n" |
|
|
|
# Generate response |
|
print("Generating response...") |
|
response = model( |
|
full_prompt, |
|
max_tokens=128, |
|
stop=["<|im_end|>", "<|im_start|>"], |
|
echo=False |
|
) |
|
|
|
# Extract and print the generated response |
|
answer = response['choices'][0]['text'].strip() |
|
print("\nQuestion:", question) |
|
print("\nGenerated Cypher statement:") |
|
print(answer) |
|
``` |
|
|
|
## Performance |
|
|
|
|
|
| Metric | stable-code-instruct-3b | stable-cypher-instruct-3b | |
|
| --------- | ------------------------- | --------------------------- | |
|
| BLEU-4 | 19.07 | 88.63 | |
|
| ROUGE-1 | 39.49 | 95.09 | |
|
| ROUGE-2 | 24.82 | 90.71 | |
|
| ROUGE-L | 29.63 | 91.51 | |
|
|
|
### Example |
|
|
|
#### Stable Cypher |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6504bb76423b46492e7f38c7/pweL4qgmFaknLBYp-CGHm.png) |
|
|
|
#### Stable Code |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6504bb76423b46492e7f38c7/YwMENiOk6JU14xT_wfAeN.png) |
|
|
|
### Eval params |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6504bb76423b46492e7f38c7/AT80-09XrHNz-dJs9TH3M.png) |
|
|
|
## Reproducability |
|
|
|
This is the config file from Llama Factory : |
|
|
|
```json |
|
{ |
|
"top.model_name": "Custom", |
|
"top.finetuning_type": "lora", |
|
"top.adapter_path": [], |
|
"top.quantization_bit": "none", |
|
"top.template": "default", |
|
"top.rope_scaling": "none", |
|
"top.booster": "none", |
|
"train.training_stage": "Supervised Fine-Tuning", |
|
"train.dataset_dir": "data", |
|
"train.dataset": [ |
|
"cypher_opus" |
|
], |
|
"train.learning_rate": "2e-4", |
|
"train.num_train_epochs": "5.0", |
|
"train.max_grad_norm": "1.0", |
|
"train.max_samples": "5000", |
|
"train.compute_type": "fp16", |
|
"train.cutoff_len": 256, |
|
"train.batch_size": 16, |
|
"train.gradient_accumulation_steps": 2, |
|
"train.val_size": 0.1, |
|
"train.lr_scheduler_type": "cosine", |
|
"train.logging_steps": 10, |
|
"train.save_steps": 100, |
|
"train.warmup_steps": 20, |
|
"train.neftune_alpha": 0, |
|
"train.optim": "adamw_torch", |
|
"train.resize_vocab": false, |
|
"train.packing": false, |
|
"train.upcast_layernorm": false, |
|
"train.use_llama_pro": false, |
|
"train.shift_attn": false, |
|
"train.report_to": false, |
|
"train.num_layer_trainable": 3, |
|
"train.name_module_trainable": "all", |
|
"train.lora_rank": 64, |
|
"train.lora_alpha": 64, |
|
"train.lora_dropout": 0.1, |
|
"train.loraplus_lr_ratio": 0, |
|
"train.create_new_adapter": false, |
|
"train.use_rslora": false, |
|
"train.use_dora": true, |
|
"train.lora_target": "", |
|
"train.additional_target": "", |
|
"train.dpo_beta": 0.1, |
|
"train.dpo_ftx": 0, |
|
"train.orpo_beta": 0.1, |
|
"train.reward_model": null, |
|
"train.use_galore": false, |
|
"train.galore_rank": 16, |
|
"train.galore_update_interval": 200, |
|
"train.galore_scale": 0.25, |
|
"train.galore_target": "all" |
|
} |
|
``` |
|
|
|
I used llama.cpp to merge the LoRa and generate the quants. |
|
|
|
The progress achieved from the base model is significant but you will still need to finetune on your company's syntax and entities. |
|
I've been tickering with the training parameters for a few batches of training but there is room for improvements. |
|
I'm open to the idea of making a full tutorial if there is enough interest in this project. |
|
|