--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # lambdaofgod/document-readme_dependencies-nbow-nbow-mnrl This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 200 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('lambdaofgod/document-readme_dependencies-nbow-nbow-mnrl') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=lambdaofgod/document-readme_dependencies-nbow-nbow-mnrl) ## Full Model Architecture ``` SentenceTransformer( (0): WordEmbeddings( (emb_layer): Embedding(53559, 200) ) (1): WordWeights( (emb_layer): Embedding(53559, 1) ) (2): Pooling({'word_embedding_dimension': 200, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors