File size: 1,836 Bytes
addbac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f59678
 
 
 
 
addbac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f59678
 
 
addbac2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
datasets:
- ontonotes5
model-index:
- name: deberta-v3-base_on5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base_on5

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the ontonotes5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0776
- F1-type-match: 0.9325
- F1-partial: 0.9488
- F1-strict: 0.9046
- F1-exact: 0.9299

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1-type-match | F1-partial | F1-strict | F1-exact |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:---------:|:--------:|
| 0.0427        | 1.0   | 936  | 0.0674          | 0.9291        | 0.9452     | 0.8986    | 0.9246   |
| 0.0235        | 2.0   | 1873 | 0.0722          | 0.9281        | 0.9464     | 0.9002    | 0.9275   |
| 0.0148        | 3.0   | 2808 | 0.0776          | 0.9325        | 0.9488     | 0.9046    | 0.9299   |


### Framework versions

- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0