--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer datasets: - ontonotes5 model-index: - name: deberta-v3-base_on5 results: [] --- # deberta-v3-base_on5 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the ontonotes5 dataset. It achieves the following results on the evaluation set: - Loss: 0.0598 - F1-type-match: 0.6780 - F1-partial: 0.6872 - F1-strict: 0.6565 - F1-exact: 0.6729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-type-match | F1-partial | F1-strict | F1-exact | |:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:---------:|:--------:| | 0.0738 | 1.0 | 936 | 0.0624 | 0.5568 | 0.5632 | 0.5322 | 0.5479 | | 0.0432 | 2.0 | 1873 | 0.0591 | 0.5773 | 0.5848 | 0.5559 | 0.5709 | | 0.0289 | 3.0 | 2808 | 0.0598 | 0.6780 | 0.6872 | 0.6565 | 0.6729 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0