--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer datasets: - ontonotes5 model-index: - name: deberta-v3-base_on5 results: [] --- # deberta-v3-base_on5 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the ontonotes5 dataset. It achieves the following results on the evaluation set: - Loss: 0.0776 - F1-type-match: 0.9325 - F1-partial: 0.9488 - F1-strict: 0.9046 - F1-exact: 0.9299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-type-match | F1-partial | F1-strict | F1-exact | |:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:---------:|:--------:| | 0.0427 | 1.0 | 936 | 0.0674 | 0.9291 | 0.9452 | 0.8986 | 0.9246 | | 0.0235 | 2.0 | 1873 | 0.0722 | 0.9281 | 0.9464 | 0.9002 | 0.9275 | | 0.0148 | 3.0 | 2808 | 0.0776 | 0.9325 | 0.9488 | 0.9046 | 0.9299 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0