File size: 7,279 Bytes
8e87a4d 5c2146b b5e4a48 5c2146b 8e87a4d b5e4a48 8e87a4d b5e4a48 8e87a4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
widget:
- text: Atlanta Games silver medal winner Edwards has called on other leading athletes
to take part in the Sarajevo meeting--a goodwill gesture towards Bosnia as it
recovers from the war in the Balkans--two days after the grand prix final in Milan.
- text: Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting
83), Hampshire 232 and 109-5.
- text: Poland's Foreign Minister Dariusz Rosati will visit Yugoslavia on September
3 and 4 to revive a dialogue between the two governments which was effectively
frozen in 1992,PAP news agency reported on Friday.
- text: The authorities are apparently extremely afraid of any political and social
discontent," said Xiao,in Manila to attend an Amnesty International conference
on human rights in China.
- text: American Nate Miller successfully defended his WBA cruiserweight title when
he knocked out compatriot James Heath in the seventh round of their bout on Saturday.
pipeline_tag: token-classification
model-index:
- name: SpanMarker
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: conll2003
split: eval
metrics:
- type: f1
value: 0.9550004205568171
name: F1
- type: precision
value: 0.9542780299209951
name: Precision
- type: recall
value: 0.9557239057239058
name: Recall
---
# SpanMarker
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2003](https://huggingface.co/datasets/conll2003) dataset that can be used for Named Entity Recognition.
## Model Details
Important Note: I used the Tokenizer from "roberta-base".
```diff
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
+tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
+model.set_tokenizer(tokenizer)
# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
```
### Model Description
- **Model Type:** SpanMarker
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [conll2003](https://huggingface.co/datasets/conll2003)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------|
| LOC | "Germany", "BRUSSELS", "Britain" |
| MISC | "German", "British", "EU-wide" |
| ORG | "European Commission", "EU", "European Union" |
| PER | "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn" |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
model.set_tokenizer(tokenizer)
# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 14.5019 | 113 |
| Entities per sentence | 0 | 1.6736 | 20 |
### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:-----:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 1.0 | 883 | 0.0123 | 0.9293 | 0.9274 | 0.9284 | 0.9848 |
| 2.0 | 1766 | 0.0089 | 0.9412 | 0.9456 | 0.9434 | 0.9882 |
| 3.0 | 2649 | 0.0077 | 0.9499 | 0.9505 | 0.9502 | 0.9893 |
| 4.0 | 3532 | 0.0070 | 0.9527 | 0.9537 | 0.9532 | 0.9900 |
| 5.0 | 4415 | 0.0068 | 0.9543 | 0.9557 | 0.9550 | 0.9902 |
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.36.0
- PyTorch: 2.0.0
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |