Update README.md
Browse files
README.md
CHANGED
@@ -211,7 +211,7 @@ moe_model.set_gating_layer_params(gating_layer_params)
|
|
211 |
|
212 |

|
213 |
|
214 |
-
### Peparing gating network for training
|
215 |
|
216 |
To freeze all parameters in the model except for the gating neural networks, you can use:
|
217 |
|
@@ -224,6 +224,86 @@ You can unfreeze:
|
|
224 |
un_freeze_all(moe_model)
|
225 |
```
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
## Inference
|
228 |
|
229 |
### Chat Format
|
|
|
211 |
|
212 |

|
213 |
|
214 |
+
### Peparing gating network for full training
|
215 |
|
216 |
To freeze all parameters in the model except for the gating neural networks, you can use:
|
217 |
|
|
|
224 |
un_freeze_all(moe_model)
|
225 |
```
|
226 |
|
227 |
+
Define FT_repo_id to push on HF hub/save model:
|
228 |
+
```
|
229 |
+
FT_repo_id='xxxxx/' #<repo_ID>
|
230 |
+
```
|
231 |
+
|
232 |
+
```
|
233 |
+
from datasets import load_dataset
|
234 |
+
|
235 |
+
train_dataset = load_dataset("lamm-mit/Cephalo-Wikipedia-Materials", split="train")
|
236 |
+
```
|
237 |
+
|
238 |
+
```python
|
239 |
+
import random
|
240 |
+
|
241 |
+
class MyDataCollator:
|
242 |
+
def __init__(self, processor):
|
243 |
+
self.processor = processor
|
244 |
+
|
245 |
+
def __call__(self, examples):
|
246 |
+
texts = []
|
247 |
+
images = []
|
248 |
+
for example in examples:
|
249 |
+
image = example["image"]
|
250 |
+
question = example["query"]
|
251 |
+
answer = example["answer"]
|
252 |
+
messages = [ {
|
253 |
+
"role": "user", "content": '<|image_1|>\n'+question},
|
254 |
+
{"role": "assistant", "content": f"{answer}"}, ]
|
255 |
+
|
256 |
+
text = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
|
257 |
+
|
258 |
+
images.append(image)
|
259 |
+
|
260 |
+
batch = processor(text=text, images=[image], return_tensors="pt", padding=True
|
261 |
+
|
262 |
+
labels = batch["input_ids"].clone()
|
263 |
+
labels[labels <0] = -100
|
264 |
+
|
265 |
+
batch["labels"] = labels
|
266 |
+
|
267 |
+
return batch
|
268 |
+
|
269 |
+
data_collator = MyDataCollator(processor)
|
270 |
+
```
|
271 |
+
Then set up trainer, and train:
|
272 |
+
```python
|
273 |
+
from transformers import TrainingArguments, Trainer
|
274 |
+
|
275 |
+
optim = "paged_adamw_8bit"
|
276 |
+
|
277 |
+
training_args = TrainingArguments(
|
278 |
+
num_train_epochs=2,
|
279 |
+
per_device_train_batch_size=1,
|
280 |
+
gradient_accumulation_steps=4,
|
281 |
+
warmup_steps=250,
|
282 |
+
learning_rate=1e-5,
|
283 |
+
weight_decay=0.01,
|
284 |
+
logging_steps=25,
|
285 |
+
output_dir="output_training",
|
286 |
+
optim=optim,
|
287 |
+
save_strategy="steps",
|
288 |
+
save_steps=1000,
|
289 |
+
save_total_limit=16,
|
290 |
+
#fp16=True,
|
291 |
+
bf16=True,
|
292 |
+
push_to_hub_model_id=FT_repo_id,
|
293 |
+
remove_unused_columns=False,
|
294 |
+
report_to="none",
|
295 |
+
)
|
296 |
+
|
297 |
+
trainer = Trainer(
|
298 |
+
model=moe_model,
|
299 |
+
args=training_args,
|
300 |
+
data_collator=data_collator,
|
301 |
+
train_dataset=train_dataset,
|
302 |
+
)
|
303 |
+
|
304 |
+
trainer.train()
|
305 |
+
```
|
306 |
+
|
307 |
## Inference
|
308 |
|
309 |
### Chat Format
|