Update README.md
Browse files
README.md
CHANGED
|
@@ -137,6 +137,100 @@ A similar mechanism can be employed to generate 3D models:
|
|
| 137 |
|
| 138 |

|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
## Citation
|
| 141 |
|
| 142 |
Please cite as:
|
|
|
|
| 137 |
|
| 138 |

|
| 139 |
|
| 140 |
+
## Fine-tuning
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
Load base model
|
| 144 |
+
|
| 145 |
+
```python
|
| 146 |
+
model_id = "microsoft/Phi-3-vision-128k-instruct"
|
| 147 |
+
|
| 148 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")
|
| 149 |
+
|
| 150 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
Define FT_repo_id to push on HF hub/save model:
|
| 154 |
+
```
|
| 155 |
+
FT_repo_id='xxxxx/' #<repo_ID>
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
```
|
| 159 |
+
from datasets import load_dataset
|
| 160 |
+
|
| 161 |
+
train_dataset = load_dataset("lamm-mit/Cephalo-Wikipedia-Materials", split="train")
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
```python
|
| 165 |
+
import random
|
| 166 |
+
|
| 167 |
+
class MyDataCollator:
|
| 168 |
+
def __init__(self, processor):
|
| 169 |
+
self.processor = processor
|
| 170 |
+
|
| 171 |
+
def __call__(self, examples):
|
| 172 |
+
texts = []
|
| 173 |
+
images = []
|
| 174 |
+
for example in examples:
|
| 175 |
+
image = example["image"]
|
| 176 |
+
question = example["query"]
|
| 177 |
+
answer = example["answer"]
|
| 178 |
+
messages = [ {
|
| 179 |
+
"role": "user", "content": '<|image_1|>\n'+question},
|
| 180 |
+
{"role": "assistant", "content": f"{answer}"}, ]
|
| 181 |
+
|
| 182 |
+
text = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
|
| 183 |
+
|
| 184 |
+
images.append(image)
|
| 185 |
+
|
| 186 |
+
batch = processor(text=text, images=[image], return_tensors="pt", padding=True
|
| 187 |
+
|
| 188 |
+
labels = batch["input_ids"].clone()
|
| 189 |
+
labels[labels <0] = -100
|
| 190 |
+
|
| 191 |
+
batch["labels"] = labels
|
| 192 |
+
|
| 193 |
+
return batch
|
| 194 |
+
|
| 195 |
+
data_collator = MyDataCollator(processor)
|
| 196 |
+
```
|
| 197 |
+
Then set up trainer, and train:
|
| 198 |
+
```python
|
| 199 |
+
from transformers import TrainingArguments, Trainer
|
| 200 |
+
|
| 201 |
+
optim = "paged_adamw_8bit"
|
| 202 |
+
|
| 203 |
+
training_args = TrainingArguments(
|
| 204 |
+
num_train_epochs=2,
|
| 205 |
+
per_device_train_batch_size=1,
|
| 206 |
+
#per_device_eval_batch_size=4,
|
| 207 |
+
gradient_accumulation_steps=4,
|
| 208 |
+
warmup_steps=250,
|
| 209 |
+
learning_rate=1e-5,
|
| 210 |
+
weight_decay=0.01,
|
| 211 |
+
logging_steps=25,
|
| 212 |
+
output_dir="output_training",
|
| 213 |
+
optim=optim,
|
| 214 |
+
save_strategy="steps",
|
| 215 |
+
save_steps=1000,
|
| 216 |
+
save_total_limit=16,
|
| 217 |
+
#fp16=True,
|
| 218 |
+
bf16=True,
|
| 219 |
+
push_to_hub_model_id=FT_repo_id,
|
| 220 |
+
remove_unused_columns=False,
|
| 221 |
+
report_to="none",
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
trainer = Trainer(
|
| 225 |
+
model=model,
|
| 226 |
+
args=training_args,
|
| 227 |
+
data_collator=data_collator,
|
| 228 |
+
train_dataset=train_dataset,
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
trainer.train()
|
| 232 |
+
```
|
| 233 |
+
|
| 234 |
## Citation
|
| 235 |
|
| 236 |
Please cite as:
|