mjbuehler commited on
Commit
1167c9f
·
verified ·
1 Parent(s): eb037a1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -1
README.md CHANGED
@@ -21,6 +21,7 @@ Figure 2: PRefLexOR Recursive Reasoning Algorithm: An iterative approach leverag
21
 
22
  ```python
23
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
24
  model_name='lamm-mit/PRefLexOR_ORPO_DPO_EXO_10242024'
25
  model = AutoModelForCausalLM.from_pretrained(model_name,
26
  torch_dtype =torch.bfloat16,
@@ -31,8 +32,13 @@ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True,
31
  )
32
  ```
33
 
34
- Simple inference:
 
 
 
35
  ```python
 
 
36
  txt = 'What is the relationship between materials and music? Brief answer.' + f' Use {think_start}.'
37
 
38
  output_text, messages = generate_local_model(
@@ -59,6 +65,60 @@ print ("THINKING:\n\n", thinking)
59
  print ("ANSWER:\n\n", answer_only)
60
  ```
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  ## Citation
63
 
64
  ```bibtex
 
21
 
22
  ```python
23
  from transformers import AutoModelForCausalLM, AutoTokenizer
24
+
25
  model_name='lamm-mit/PRefLexOR_ORPO_DPO_EXO_10242024'
26
  model = AutoModelForCausalLM.from_pretrained(model_name,
27
  torch_dtype =torch.bfloat16,
 
32
  )
33
  ```
34
 
35
+ ## Inference example
36
+
37
+ ### Simple inference:
38
+
39
  ```python
40
+ from PRefLexOR import *
41
+
42
  txt = 'What is the relationship between materials and music? Brief answer.' + f' Use {think_start}.'
43
 
44
  output_text, messages = generate_local_model(
 
65
  print ("ANSWER:\n\n", answer_only)
66
  ```
67
 
68
+ ### Recursive inference usingh multi-agentic modeling
69
+
70
+ ```python
71
+ from transformers import AutoModelForCausalLM, AutoTokenizer
72
+
73
+ # Load reasoning model
74
+ model_name='lamm-mit/PRefLexOR_ORPO_DPO_EXO_10242024'
75
+ model = AutoModelForCausalLM.from_pretrained(model_name,
76
+ torch_dtype =torch.bfloat16,
77
+ attn_implementation="flash_attention_2",device_map="auto",trust_remote_code=True,
78
+ )
79
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True,
80
+ use_fast=False,
81
+ )
82
+ # Load critic model
83
+ model_name_base = "meta-llama/Llama-3.2-3B-Instruct"
84
+
85
+ critic_model = AutoModelForCausalLM.from_pretrained(
86
+ model_name_base,
87
+ torch_dtype=torch.bfloat16,
88
+ attn_implementation="flash_attention_2",
89
+ device_map="auto",
90
+ trust_remote_code=True
91
+ )
92
+ ```
93
+
94
+ Example inference
95
+ ```python
96
+ output_text, output_list, output_text_integrated = recursive_response_from_thinking(
97
+ model=model,
98
+ tokenizer=tokenizer,
99
+ model_critic=critic_model,
100
+ tokenizer_critic=tokenizer, #same tokenizer in our case
101
+ question="Develop an idea of how graphene can be combined with silk fibers to create a filtration membrane.",
102
+ N=3,
103
+ temperature=0.1,
104
+ temperature_improvement=0.1,
105
+ system_prompt="You are a helpful assistant.",
106
+ system_prompt_critic="You carefully improve responses, with attention to detail, and following all directions.",
107
+ verbatim=False,
108
+ ```
109
+ Printing the output:
110
+ ```python
111
+ for i, item in enumerate(output_list):
112
+ print (f"i={i}", 64*"-")
113
+ print (item)
114
+
115
+ print (64*"#")
116
+ print ("INTEGRATED RESPONSE:")
117
+ print (output_text_integrated)
118
+ print (64*"#")
119
+
120
+ ```
121
+
122
  ## Citation
123
 
124
  ```bibtex