Upload X-LoRA-Gemma_Inference.ipynb
Browse files- X-LoRA-Gemma_Inference.ipynb +1101 -0
X-LoRA-Gemma_Inference.ipynb
ADDED
@@ -0,0 +1,1101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "3288987d",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# X-LoRA Inference: Gemma-7b model for molecular design \n"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "markdown",
|
13 |
+
"id": "25beb240-1ae1-4537-9cc6-da621862d0bd",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"### Helper functions "
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"id": "e2c18b20-b1a9-4f3e-ae84-2a551e2ed69c",
|
23 |
+
"metadata": {
|
24 |
+
"tags": []
|
25 |
+
},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"import os\n",
|
29 |
+
"import random\n",
|
30 |
+
"\n",
|
31 |
+
"import torch\n",
|
32 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
33 |
+
"import transformers\n",
|
34 |
+
"from datasets import load_dataset\n",
|
35 |
+
"from datasets import IterableDataset\n",
|
36 |
+
"\n",
|
37 |
+
"from transformers import Trainer\n",
|
38 |
+
"from transformers import TrainingArguments\n",
|
39 |
+
"from transformers import DataCollatorWithPadding\n",
|
40 |
+
"from transformers import TrainerCallback\n",
|
41 |
+
"from transformers import AutoConfig\n",
|
42 |
+
"from transformers import BitsAndBytesConfig\n",
|
43 |
+
"\n",
|
44 |
+
"from peft import LoraConfig, get_peft_model\n",
|
45 |
+
"from torch.utils.data import Dataset\n",
|
46 |
+
"from transformers import get_linear_schedule_with_warmup\n",
|
47 |
+
"from accelerate import infer_auto_device_map\n",
|
48 |
+
"import math\n",
|
49 |
+
"import numpy as np\n",
|
50 |
+
"import unidecode\n",
|
51 |
+
"import pandas as pd\n",
|
52 |
+
"from matplotlib import pyplot as plt\n",
|
53 |
+
"import peft\n",
|
54 |
+
"\n",
|
55 |
+
"from tqdm.notebook import tqdm\n",
|
56 |
+
"\n",
|
57 |
+
"device='cuda'\n",
|
58 |
+
"\n",
|
59 |
+
"def params(model):\n",
|
60 |
+
" model_parameters = filter(lambda p: p.requires_grad, model.parameters())\n",
|
61 |
+
" params = sum([np.prod(p.size()) for p in model_parameters])\n",
|
62 |
+
"\n",
|
63 |
+
" print(\"Number of model arameters: \", params) \n",
|
64 |
+
"\n",
|
65 |
+
"def generate_response (model,tokenizer,text_input=\"Biology offers amazing\",\n",
|
66 |
+
" num_return_sequences=1,\n",
|
67 |
+
" temperature=1., #the higher the temperature, the more creative the model becomes\n",
|
68 |
+
" max_new_tokens=127,\n",
|
69 |
+
" num_beams=1,\n",
|
70 |
+
" top_k = 50,\n",
|
71 |
+
" top_p =0.9,repetition_penalty=1.,eos_token_id=107,verbatim=False,\n",
|
72 |
+
" exponential_decay_length_penalty_fac=None,add_special_tokens =True, eos_token=None, \n",
|
73 |
+
" ):\n",
|
74 |
+
"\n",
|
75 |
+
" if eos_token==None:\n",
|
76 |
+
" eos_token=tokenizer('<end_of_turn>', add_special_tokens =False, ) ['input_ids'][0]\n",
|
77 |
+
" \n",
|
78 |
+
" inputs = tokenizer(text_input, \n",
|
79 |
+
" add_special_tokens =add_special_tokens, \n",
|
80 |
+
" return_tensors ='pt').to(device)\n",
|
81 |
+
" if verbatim:\n",
|
82 |
+
" print (\"Length of input, tokenized: \", inputs[\"input_ids\"].shape, inputs[\"input_ids\"],\"eos_token: \", eos_token)\n",
|
83 |
+
" with torch.no_grad():\n",
|
84 |
+
" outputs = model.generate(#input_ids=inputs.to(device), \n",
|
85 |
+
" input_ids = inputs[\"input_ids\"],\n",
|
86 |
+
" attention_mask = inputs[\"attention_mask\"] , # This is usually done automatically by the tokenizer\n",
|
87 |
+
" max_new_tokens=max_new_tokens,\n",
|
88 |
+
" temperature=temperature, #value used to modulate the next token probabilities.\n",
|
89 |
+
" num_beams=num_beams,\n",
|
90 |
+
" top_k = top_k,\n",
|
91 |
+
" top_p = top_p,\n",
|
92 |
+
" num_return_sequences = num_return_sequences,\n",
|
93 |
+
" eos_token_id=eos_token,\n",
|
94 |
+
" pad_token_id = eos_token,\n",
|
95 |
+
" do_sample =True, \n",
|
96 |
+
" repetition_penalty=repetition_penalty, \n",
|
97 |
+
" )\n",
|
98 |
+
"\n",
|
99 |
+
" return tokenizer.batch_decode(outputs[:,inputs[\"input_ids\"].shape[1]:].detach().cpu().numpy(), skip_special_tokens=True)\n",
|
100 |
+
"\n",
|
101 |
+
"def generate_answer (model,tokenizer,system='You a helpful assistant. You are familiar with materials science. ',\n",
|
102 |
+
" q='What is spider silk in the context of bioinspired materials?',\n",
|
103 |
+
" repetition_penalty=1.1,\n",
|
104 |
+
" top_p=0.1, top_k=32, \n",
|
105 |
+
" temperature=.6,max_new_tokens=512, verbatim=False, eos_token=None,add_special_tokens=True,\n",
|
106 |
+
" prepend_response='', messages=[],\n",
|
107 |
+
" ):\n",
|
108 |
+
"\n",
|
109 |
+
" if eos_token==None:\n",
|
110 |
+
" eos_token= tokenizer.eos_token_id\n",
|
111 |
+
" \n",
|
112 |
+
" if system==None:\n",
|
113 |
+
" messages.append ({\"role\": \"user\", \"content\": q} )\n",
|
114 |
+
" else:\n",
|
115 |
+
" messages.append ({\"role\": \"user\", \"content\": system+q})\n",
|
116 |
+
" \n",
|
117 |
+
" txt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, )\n",
|
118 |
+
" txt=txt+prepend_response\n",
|
119 |
+
" \n",
|
120 |
+
" output_text=generate_response (model,tokenizer,text_input=txt,eos_token_id=eos_token,\n",
|
121 |
+
" num_return_sequences=1, repetition_penalty=repetition_penalty,\n",
|
122 |
+
" top_p=top_p, top_k=top_k, add_special_tokens =add_special_tokens,\n",
|
123 |
+
" \n",
|
124 |
+
" temperature=temperature,max_new_tokens=max_new_tokens, verbatim=verbatim, \n",
|
125 |
+
" \n",
|
126 |
+
" )\n",
|
127 |
+
" return ( output_text[0] )"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "markdown",
|
132 |
+
"id": "75d89d27-8386-4859-a36e-ce4842415b59",
|
133 |
+
"metadata": {},
|
134 |
+
"source": [
|
135 |
+
"### Load X-LoRA Gemma model "
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "raw",
|
140 |
+
"id": "cd1b66f6-1fe1-4b2c-9309-fe01d34d7d54",
|
141 |
+
"metadata": {},
|
142 |
+
"source": [
|
143 |
+
"https://github.com/EricLBuehler/xlora"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"id": "12848c38-cc0c-41c7-bf04-9856730458df",
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [],
|
152 |
+
"source": [
|
153 |
+
"import torch\n",
|
154 |
+
"from xlora.xlora_utils import load_model \n",
|
155 |
+
"\n",
|
156 |
+
"XLoRa_model_name = 'lamm-mit/x-lora-gemma-7b'\n",
|
157 |
+
"\n",
|
158 |
+
"model, tokenizer=load_model(model_name = XLoRa_model_name, \n",
|
159 |
+
" device='cuda:0',\n",
|
160 |
+
" use_flash_attention_2=True, \n",
|
161 |
+
" dtype=torch.bfloat16,\n",
|
162 |
+
" )\n",
|
163 |
+
"eos_token_id= tokenizer('<end_of_turn>', add_special_tokens=False, ) ['input_ids'][0]\n"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "markdown",
|
168 |
+
"id": "b197ffd5-7752-4081-9227-c46a485afeec",
|
169 |
+
"metadata": {},
|
170 |
+
"source": [
|
171 |
+
"### Inference using Guidance "
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "raw",
|
176 |
+
"id": "f7009898-17a9-468a-970a-59d7c80553ca",
|
177 |
+
"metadata": {},
|
178 |
+
"source": [
|
179 |
+
"https://github.com/guidance-ai/guidance"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "code",
|
184 |
+
"execution_count": null,
|
185 |
+
"id": "80b62bf2-a424-4858-a321-f55e3327b070",
|
186 |
+
"metadata": {},
|
187 |
+
"outputs": [],
|
188 |
+
"source": [
|
189 |
+
"from guidance import models\n",
|
190 |
+
"from guidance import gen, select, system, user, assistant, newline\n",
|
191 |
+
"from IPython.display import display, Markdown\n",
|
192 |
+
"\n",
|
193 |
+
"gpt = models.TransformersChat(model=model, tokenizer=tokenizer)\n",
|
194 |
+
"gpt_question_asker = gpt"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": null,
|
200 |
+
"id": "1cb5a867-a127-45c2-b75b-35883a78930b",
|
201 |
+
"metadata": {
|
202 |
+
"scrolled": true
|
203 |
+
},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"with user(): \n",
|
207 |
+
" lm =gpt + f\"\"\"List the most important biomolecules used in biological materials to make polymers with multifunctional qualities.\"\"\" \n",
|
208 |
+
"\n",
|
209 |
+
"with assistant(): \n",
|
210 |
+
" lm+=\"[\"+gen('res1', max_tokens=1024)"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "markdown",
|
215 |
+
"id": "a841c58c-bded-4741-80df-66ca434bfac0",
|
216 |
+
"metadata": {},
|
217 |
+
"source": [
|
218 |
+
"### Inference using Hugging Face generate functions "
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": null,
|
224 |
+
"id": "26a27dc2-4e28-4fee-b37c-446281cd23da",
|
225 |
+
"metadata": {
|
226 |
+
"scrolled": true
|
227 |
+
},
|
228 |
+
"outputs": [],
|
229 |
+
"source": [
|
230 |
+
"system_prompt='You are an expert in biological molecular engineering. '\n",
|
231 |
+
"q=\"\"\"\n",
|
232 |
+
"What are potential molecular engineering approaches to create better materials? Name specific molecules of interest.\n",
|
233 |
+
"\"\"\"\n",
|
234 |
+
"\n",
|
235 |
+
"res=generate_answer (model, tokenizer,system=system_prompt,\n",
|
236 |
+
" q=q,\n",
|
237 |
+
" repetition_penalty=1., top_p=0.9, top_k=256, \n",
|
238 |
+
" temperature=.5,max_new_tokens=512, verbatim=False, \n",
|
239 |
+
" )\n",
|
240 |
+
"\n",
|
241 |
+
"display (Markdown (\"## X-LoRA:\\n\\n\"+res))"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"cell_type": "code",
|
246 |
+
"execution_count": null,
|
247 |
+
"id": "82d162fe-6149-44d4-afbe-63213b10f183",
|
248 |
+
"metadata": {},
|
249 |
+
"outputs": [],
|
250 |
+
"source": [
|
251 |
+
"system_prompt='You are an expert in biological molecular engineering. '\n",
|
252 |
+
"q=\"\"\"\n",
|
253 |
+
"List the most important biomolecules used in biological materials to make polymers with multifunctional qualities.\n",
|
254 |
+
"\"\"\"\n",
|
255 |
+
"messages=[]\n",
|
256 |
+
"res=generate_answer (model, tokenizer,system=system_prompt,\n",
|
257 |
+
" q=q, repetition_penalty=1., top_p=0.9, top_k=256, temperature=.5,max_new_tokens=512, verbatim=False,messages=messages )\n",
|
258 |
+
"\n",
|
259 |
+
"display (Markdown (\"## X-LoRA:\\n\\n\"+res))\n",
|
260 |
+
"messages.append ({\"role\": \"assistant\", \"content\": res} )"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"execution_count": null,
|
266 |
+
"id": "f9ad8c01-7cfd-4017-a8af-0b72b4ea25fe",
|
267 |
+
"metadata": {},
|
268 |
+
"outputs": [],
|
269 |
+
"source": [
|
270 |
+
"system_prompt=None\n",
|
271 |
+
"q=\"\"\"\n",
|
272 |
+
"How does chitin form a material, specifically in terms of molecular interactions? \n",
|
273 |
+
"\"\"\" \n",
|
274 |
+
"res=generate_answer (model, tokenizer,system=system_prompt,\n",
|
275 |
+
" q=q, repetition_penalty=1., top_p=0.9, top_k=256, temperature=.1,max_new_tokens=512, verbatim=False,messages=messages,\n",
|
276 |
+
" )\n",
|
277 |
+
"\n",
|
278 |
+
"display (Markdown (\"## X-LoRA:\\n\\n\"+res))\n",
|
279 |
+
"messages.append ({\"role\": \"assistant\", \"content\": res} )"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": null,
|
285 |
+
"id": "6f520fd9-0d06-4971-9b58-74d8d2c3e2ef",
|
286 |
+
"metadata": {},
|
287 |
+
"outputs": [],
|
288 |
+
"source": [
|
289 |
+
"system_prompt=None\n",
|
290 |
+
"q=\"\"\"\n",
|
291 |
+
"Thank you. What are potential chemical modifications of N-acetylglucosamine units that would improve mechanical properties?\n",
|
292 |
+
"\"\"\" \n",
|
293 |
+
"res=generate_answer (model, tokenizer,system=system_prompt,\n",
|
294 |
+
" q=q, repetition_penalty=1., top_p=0.9, top_k=256, temperature=.1,max_new_tokens=512, verbatim=False,messages=messages,\n",
|
295 |
+
" )\n",
|
296 |
+
"\n",
|
297 |
+
"display (Markdown (\"## X-LoRA:\\n\\n\"+res))\n",
|
298 |
+
"messages.append ({\"role\": \"assistant\", \"content\": res} )"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "markdown",
|
303 |
+
"id": "ce5a2293-b66d-4ef6-987e-451dc1a92621",
|
304 |
+
"metadata": {},
|
305 |
+
"source": [
|
306 |
+
"### Molecule design examples"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": null,
|
312 |
+
"id": "e547bed4-da94-48c7-b9dd-00da7732ef20",
|
313 |
+
"metadata": {
|
314 |
+
"scrolled": true
|
315 |
+
},
|
316 |
+
"outputs": [],
|
317 |
+
"source": [
|
318 |
+
"import pandas as pd\n",
|
319 |
+
"from sklearn.preprocessing import MinMaxScaler\n",
|
320 |
+
"\n",
|
321 |
+
"df_smiles=pd.read_csv ('./QM9.csv')\n",
|
322 |
+
"SMILES_LIST=list (df_smiles['smiles'])\n",
|
323 |
+
"\n",
|
324 |
+
"X = df_smiles.iloc[:, 0].values.reshape(-1, 1) # Input feature, reshaped for compatibility\n",
|
325 |
+
"y = df_smiles.iloc[:, 1:] # Target features\n",
|
326 |
+
"\n",
|
327 |
+
"# Scaling the target features\n",
|
328 |
+
"scaler = MinMaxScaler()\n",
|
329 |
+
"y_scaled = scaler.fit_transform(y)\n",
|
330 |
+
"\n",
|
331 |
+
"from sklearn.model_selection import train_test_split\n",
|
332 |
+
"\n",
|
333 |
+
"X_train, X_test, y_train, y_test= train_test_split(X, y_scaled, test_size=0.2, random_state=42)"
|
334 |
+
]
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"cell_type": "code",
|
338 |
+
"execution_count": null,
|
339 |
+
"id": "44c43109-0606-42d2-a1b6-01278ff6432f",
|
340 |
+
"metadata": {
|
341 |
+
"scrolled": true
|
342 |
+
},
|
343 |
+
"outputs": [],
|
344 |
+
"source": [
|
345 |
+
"import os\n",
|
346 |
+
"import numpy as np\n",
|
347 |
+
"import pandas as pd\n",
|
348 |
+
"import matplotlib.pyplot as plt\n",
|
349 |
+
"import seaborn as sns\n",
|
350 |
+
"from sklearn.metrics import mean_squared_error\n",
|
351 |
+
"labels = [\"mu\", \"alpha\", \"homo\", \"lumo\", \"gap\", \"r2\", \"zpve\", \"cv\", \"u0\", \"u298\", \"h298\", \"g298\"]\n",
|
352 |
+
"\n",
|
353 |
+
"def return_str(vals=np.array ([.1, .5, .6, 2.])):\n",
|
354 |
+
" ch=''\n",
|
355 |
+
" for i in range (len (vals)):\n",
|
356 |
+
" ch=ch+f'{vals[i]:1.3f},'\n",
|
357 |
+
" \n",
|
358 |
+
" return ch[:-1] \n",
|
359 |
+
"\n",
|
360 |
+
"def extract_start_and_end(string_input, start_token='[', end_token=']'):\n",
|
361 |
+
" \"\"\"\n",
|
362 |
+
" Extracts the substring from 'string_input' that is enclosed between the first occurrence of\n",
|
363 |
+
" 'start_token' and the last occurrence of 'end_token'.\n",
|
364 |
+
"\n",
|
365 |
+
" Args:\n",
|
366 |
+
" string_input (str): The string from which to extract the substring.\n",
|
367 |
+
" start_token (str): The starting delimiter. Default is '['.\n",
|
368 |
+
" end_token (str): The ending delimiter. Default is ']'.\n",
|
369 |
+
"\n",
|
370 |
+
" Returns:\n",
|
371 |
+
" str: The extracted substring. If 'start_token' or 'end_token' is not found, returns an empty string.\n",
|
372 |
+
" \"\"\"\n",
|
373 |
+
" # Find the index of the first occurrence of start_token\n",
|
374 |
+
" i = string_input.find(start_token)\n",
|
375 |
+
" # Find the index of the last occurrence of end_token\n",
|
376 |
+
" j = string_input.rfind(end_token)\n",
|
377 |
+
"\n",
|
378 |
+
" # Check if both tokens are found and i < j to ensure proper enclosure\n",
|
379 |
+
" if i == -1 or j == -1 or i >= j:\n",
|
380 |
+
" return \"\"\n",
|
381 |
+
" else:\n",
|
382 |
+
" # Extract and return the content between the first start_token and the last end_token\n",
|
383 |
+
" return string_input[i + 1:j]\n",
|
384 |
+
"\n",
|
385 |
+
"def is_SMILES_novel (SMILES, SMILES_LIST=None):\n",
|
386 |
+
"\n",
|
387 |
+
" if SMILES_LIST !=None:\n",
|
388 |
+
" \n",
|
389 |
+
" if SMILES not in SMILES_LIST:\n",
|
390 |
+
" is_novel=True\n",
|
391 |
+
" else:\n",
|
392 |
+
" is_novel=False\n",
|
393 |
+
" else:\n",
|
394 |
+
" is_novel=None\n",
|
395 |
+
" return is_novel\n",
|
396 |
+
" \n",
|
397 |
+
"def visualize_SMILES (smiles_code, dir_path='./' , root='', sample_count=0):\n",
|
398 |
+
" molecule = Chem.MolFromSmiles(smiles_code)\n",
|
399 |
+
" \n",
|
400 |
+
" # Generate an image of the molecule\n",
|
401 |
+
" molecule_image = Draw.MolToImage(molecule)\n",
|
402 |
+
" \n",
|
403 |
+
" # Display the image directly in Jupyter Notebook\n",
|
404 |
+
" display(molecule_image)\n",
|
405 |
+
" \n",
|
406 |
+
" image_path=f\"{dir_path}/SMILES_{sample_count}_{root}_molecule_image.png\"\n",
|
407 |
+
" molecule_image.save(image_path)\n",
|
408 |
+
"\n",
|
409 |
+
" return image_path\n",
|
410 |
+
"\n",
|
411 |
+
"\n",
|
412 |
+
"def design_from_target(\n",
|
413 |
+
" model,\n",
|
414 |
+
" tokenizer,\n",
|
415 |
+
" target,\n",
|
416 |
+
" temperature=0.1,\n",
|
417 |
+
" num_beams=1,\n",
|
418 |
+
" top_k=50,\n",
|
419 |
+
" top_p=0.95,\n",
|
420 |
+
" repetition_penalty=1.0,\n",
|
421 |
+
" messages=[]\n",
|
422 |
+
"):\n",
|
423 |
+
" # Format the target line for molecular property generation\n",
|
424 |
+
" line = f'GenerateMolecularProperties<{return_str(target)}>'\n",
|
425 |
+
" \n",
|
426 |
+
" # Add the line to the message history\n",
|
427 |
+
" messages.append({\"role\": \"user\", \"content\": line})\n",
|
428 |
+
" \n",
|
429 |
+
" # Apply chat template with optional tokenization\n",
|
430 |
+
" line = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
|
431 |
+
" \n",
|
432 |
+
" # Generate response with specified parameters\n",
|
433 |
+
" result = generate_response(\n",
|
434 |
+
" model,\n",
|
435 |
+
" tokenizer,\n",
|
436 |
+
" text_input=line,\n",
|
437 |
+
" num_return_sequences=1,\n",
|
438 |
+
" temperature=temperature,\n",
|
439 |
+
" top_k=top_k,\n",
|
440 |
+
" top_p=top_p,\n",
|
441 |
+
" max_new_tokens=256\n",
|
442 |
+
" )[0]\n",
|
443 |
+
" \n",
|
444 |
+
" return result\n",
|
445 |
+
"\n",
|
446 |
+
"def properties_from_SMILES(\n",
|
447 |
+
" model,\n",
|
448 |
+
" tokenizer,\n",
|
449 |
+
" target,\n",
|
450 |
+
" temperature=0.1,\n",
|
451 |
+
" top_k=128,\n",
|
452 |
+
" top_p=0.9,\n",
|
453 |
+
" num_beams=1,\n",
|
454 |
+
" repetition_penalty=1.0\n",
|
455 |
+
"):\n",
|
456 |
+
" # Format the target line for molecular property calculation\n",
|
457 |
+
" line = f'CalculateMolecularProperties<{target}>'\n",
|
458 |
+
" \n",
|
459 |
+
" # Initialize messages and add the formatted line\n",
|
460 |
+
" messages = [{\"role\": \"user\", \"content\": line}]\n",
|
461 |
+
" \n",
|
462 |
+
" # Apply chat template with optional tokenization\n",
|
463 |
+
" line = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
|
464 |
+
" \n",
|
465 |
+
" # Generate response with specified parameters\n",
|
466 |
+
" result = generate_response(\n",
|
467 |
+
" model,\n",
|
468 |
+
" tokenizer,\n",
|
469 |
+
" text_input=line,\n",
|
470 |
+
" num_return_sequences=1,\n",
|
471 |
+
" temperature=temperature,\n",
|
472 |
+
" top_k=top_k,\n",
|
473 |
+
" top_p=top_p,\n",
|
474 |
+
" max_new_tokens=256\n",
|
475 |
+
" )[0]\n",
|
476 |
+
" \n",
|
477 |
+
" # Extract relevant part of the result and convert to float list\n",
|
478 |
+
" result = extract_start_and_end(result, start_token='[', end_token=']')\n",
|
479 |
+
" return [float(i) for i in result.split(',')]\n",
|
480 |
+
"\n",
|
481 |
+
" \n",
|
482 |
+
"def avg_properties_from_SMILES (model, tokenizer, SMILES ='O=C(N)C1OC(CO)C(O)C(O)C1O', SMILES_dir='./',\n",
|
483 |
+
" temperature=0.01, top_k=50,top_p=0.95, num_beams=1, repetition_penalty=1.,\n",
|
484 |
+
" labels=None, N_prop=6, plot_results=True):\n",
|
485 |
+
" if not os.path.exists(SMILES_dir):\n",
|
486 |
+
" os.makedirs(SMILES_dir) \n",
|
487 |
+
" properties=[]\n",
|
488 |
+
" if labels==None and plot_results:\n",
|
489 |
+
" labels= ['mu',\n",
|
490 |
+
" 'alpha',\n",
|
491 |
+
" 'homo',\n",
|
492 |
+
" 'lumo',\n",
|
493 |
+
" 'gap',\n",
|
494 |
+
" 'r2',\n",
|
495 |
+
" 'zpve',\n",
|
496 |
+
" 'cv',\n",
|
497 |
+
" 'u0',\n",
|
498 |
+
" 'u298',\n",
|
499 |
+
" 'h298',\n",
|
500 |
+
" 'g298']\n",
|
501 |
+
" successful=0\n",
|
502 |
+
" for i in tqdm(range (N_prop)):\n",
|
503 |
+
" \n",
|
504 |
+
" try:\n",
|
505 |
+
" _prop=properties_from_SMILES (model, tokenizer, SMILES,temperature=temperature, top_k=top_k,top_p=top_p,\n",
|
506 |
+
" num_beams=num_beams, repetition_penalty=repetition_penalty,\n",
|
507 |
+
" )\n",
|
508 |
+
" if len (_prop)==len (labels):\n",
|
509 |
+
" \n",
|
510 |
+
" properties.append(np.array( _prop) )\n",
|
511 |
+
" successful+=1\n",
|
512 |
+
" except:\n",
|
513 |
+
" print (end=\"\")\n",
|
514 |
+
" \n",
|
515 |
+
" all_properties = np.array(properties)\n",
|
516 |
+
" \n",
|
517 |
+
" # Calculate mean and standard deviation for each property\n",
|
518 |
+
" means = np.mean(all_properties, axis=0)\n",
|
519 |
+
" std_devs = np.std(all_properties, axis=0)\n",
|
520 |
+
" \n",
|
521 |
+
" # Labels for the x-axis\n",
|
522 |
+
" if plot_results: \n",
|
523 |
+
" # Creating the plot with error bars\n",
|
524 |
+
" plt.figure(figsize=(6, 4))\n",
|
525 |
+
" plt.errorbar(labels, means, yerr=std_devs, fmt='o', ecolor='red', capsize=5, capthick=2, marker='s', color='blue')\n",
|
526 |
+
" plt.xticks(rotation=45)\n",
|
527 |
+
" plt.xlabel('Property')\n",
|
528 |
+
" plt.ylabel('Value')\n",
|
529 |
+
" plt.title('Average Properties with Error Bars')\n",
|
530 |
+
" plt.tight_layout()\n",
|
531 |
+
" plt.savefig(SMILES_dir + f\"avg_prop_{SMILES}.svg\", format=\"svg\")\n",
|
532 |
+
" \n",
|
533 |
+
" plt.show()\n",
|
534 |
+
" print (f\"Successful attempts: {successful}/{N_prop}\")\n",
|
535 |
+
" \n",
|
536 |
+
" return means, std_devs \n",
|
537 |
+
"\n",
|
538 |
+
"def is_valid_smiles(smiles):\n",
|
539 |
+
" # This function tries to create a molecule object from a SMILES string.\n",
|
540 |
+
" # If the molecule object is created successfully and is not None, the SMILES is valid.\n",
|
541 |
+
" mol = Chem.MolFromSmiles(smiles)\n",
|
542 |
+
" return mol is not None\n",
|
543 |
+
" \n",
|
544 |
+
"def design_molecule(model, tokenizer, target=None, temperature=0.1,\n",
|
545 |
+
" num_beams=1,top_k=50,top_p=0.95, repetition_penalty=1.,\n",
|
546 |
+
" SMILES_LIST=None, dir_path='./', messages=[],N_attempts_for_forward=1):\n",
|
547 |
+
"\n",
|
548 |
+
" if not os.path.exists(dir_path):\n",
|
549 |
+
" os.makedirs(dir_path)\n",
|
550 |
+
" if target.any()==None:\n",
|
551 |
+
" target = np.random.rand(12)\n",
|
552 |
+
" \n",
|
553 |
+
" try:\n",
|
554 |
+
" SMILES=design_from_target (model, tokenizer, target, messages=messages)\n",
|
555 |
+
" except:\n",
|
556 |
+
" SMILES=None\n",
|
557 |
+
" print (\"Generation failed.\")\n",
|
558 |
+
"\n",
|
559 |
+
" is_novel=is_SMILES_novel (SMILES, SMILES_LIST)\n",
|
560 |
+
" print (\"Result: \", SMILES, \"is novel: \", is_novel, \"is valid: \", is_valid_smiles(SMILES))\n",
|
561 |
+
" try:\n",
|
562 |
+
" visualize_SMILES (SMILES, dir_path=dir_path)\n",
|
563 |
+
" except:\n",
|
564 |
+
" print (\"Vis failed.\")\n",
|
565 |
+
"\n",
|
566 |
+
" try:\n",
|
567 |
+
" if N_attempts_for_forward==1:\n",
|
568 |
+
" predicted = properties_from_SMILES(model, tokenizer, SMILES,temperature_pred, num_beams,\n",
|
569 |
+
" top_k, top_p, repetition_penalty)\n",
|
570 |
+
" else:\n",
|
571 |
+
" predicted,_=avg_properties_from_SMILES(model, tokenizer, SMILES, SMILES_dir=SMILES_dir,\n",
|
572 |
+
" temperature=temperature_pred, top_k=top_k,top_p=top_p, num_beams=num_beams, repetition_penalty=repetition_penalty,\n",
|
573 |
+
" labels=labels, N_prop=N_attempts_for_forward, plot_results=False)\n",
|
574 |
+
"\n",
|
575 |
+
" sns.set_style(\"whitegrid\")\n",
|
576 |
+
" plt.gcf().set_facecolor('white')\n",
|
577 |
+
" # Assuming GT_res and predictions are your data arrays/lists for Ground Truth and Predictions respectively\n",
|
578 |
+
" \n",
|
579 |
+
" x = np.arange(len(labels)) # Label locations\n",
|
580 |
+
" width = 0.35 # Width of the bars\n",
|
581 |
+
" \n",
|
582 |
+
" fig, ax = plt.subplots(figsize=(9, 5))\n",
|
583 |
+
" rects1 = ax.bar(x - width/2, target, width, label='Target')\n",
|
584 |
+
" rects2 = ax.bar(x + width/2, predicted, width, label='Predicted properties')\n",
|
585 |
+
" \n",
|
586 |
+
" # Add some text for labels, title and custom x-axis tick labels, etc.\n",
|
587 |
+
" ax.set_ylabel('Values')\n",
|
588 |
+
" ax.set_title('Comparison of Target and Predicted Properties')\n",
|
589 |
+
" ax.set_xticks(x)\n",
|
590 |
+
" ax.set_xticklabels(labels, rotation=45, ha=\"right\")\n",
|
591 |
+
" ax.legend()\n",
|
592 |
+
"\n",
|
593 |
+
" except:\n",
|
594 |
+
" print(\"Forward anaysis failed.\")\n",
|
595 |
+
" return SMILES, is_novel\n",
|
596 |
+
"\n",
|
597 |
+
"def design_molecule_loop(model, tokenizer, target=None, temperature_gen=0.3,temperature_pred=0.01, SMILES_LIST=None,\n",
|
598 |
+
" top_k=50, top_p=0.95, repetition_penalty=1., num_beams=1,update_primer_with_better_draft=False,\n",
|
599 |
+
" threshold=0.01, N_max=100, dir_path='./',lower_bound = 0.0,remove_duplicates=True,\n",
|
600 |
+
" upper_bound = 0.1,sample_count=0, messages=[], N_attempts_for_forward=1, set_opt=None):\n",
|
601 |
+
"\n",
|
602 |
+
" mse_smallest_current=9999\n",
|
603 |
+
" if not os.path.exists(dir_path):\n",
|
604 |
+
" os.makedirs(dir_path)\n",
|
605 |
+
" if target is None or not target.any():\n",
|
606 |
+
" target = np.random.rand(12)\n",
|
607 |
+
"\n",
|
608 |
+
" if len (messages) >0:\n",
|
609 |
+
" print (\"Using primed generation:\\n\", messages)\n",
|
610 |
+
" \n",
|
611 |
+
" records = [] # To store SMILES, properties, and MSE\n",
|
612 |
+
" for iteration in range(N_max):\n",
|
613 |
+
" try:\n",
|
614 |
+
" print (f\">>> Iteration={iteration}\")\n",
|
615 |
+
" original_messages=copy.deepcopy (messages)\n",
|
616 |
+
"\n",
|
617 |
+
" SMILES = design_from_target(model, tokenizer, target, temperature_gen, num_beams,\n",
|
618 |
+
" top_k, top_p, repetition_penalty, messages=original_messages)\n",
|
619 |
+
" is_novel=is_SMILES_novel (SMILES, SMILES_LIST)\n",
|
620 |
+
"\n",
|
621 |
+
" if is_novel and is_valid_smiles(SMILES):\n",
|
622 |
+
" print (f\"{SMILES} is novel: {is_novel}\", \"is valid: \", {is_valid_smiles(SMILES)})\n",
|
623 |
+
" if N_attempts_for_forward==1:\n",
|
624 |
+
" predicted = properties_from_SMILES(model, tokenizer, SMILES,temperature_pred, num_beams,\n",
|
625 |
+
" top_k, top_p, repetition_penalty)\n",
|
626 |
+
" else:\n",
|
627 |
+
" predicted,_=avg_properties_from_SMILES(model, tokenizer, SMILES, SMILES_dir=dir_path,\n",
|
628 |
+
" temperature=temperature_pred, top_k=top_k,top_p=top_p, repetition_penalty=repetition_penalty,\n",
|
629 |
+
" labels=labels, N_prop=N_attempts_for_forward, plot_results=False)\n",
|
630 |
+
"\n",
|
631 |
+
" if set_opt==None:\n",
|
632 |
+
" mse = mean_squared_error(target, predicted)\n",
|
633 |
+
" else:\n",
|
634 |
+
" mse = mean_squared_error(target[set_opt], predicted[set_opt])\n",
|
635 |
+
" if mse<mse_smallest_current:\n",
|
636 |
+
" mse_smallest_current=mse\n",
|
637 |
+
" if update_primer_with_better_draft:\n",
|
638 |
+
" messages=prime_messages (SMILES, predicted , N=1)\n",
|
639 |
+
" print (\"Smaller MSE found, updated messages primer! Messages: \", messages,\n",
|
640 |
+
" f\"\\n\\nCurrent MSE: {mse}\")\n",
|
641 |
+
" \n",
|
642 |
+
" records.append((SMILES, predicted, mse, is_novel))\n",
|
643 |
+
" \n",
|
644 |
+
" print (f\">>>Iteration={iteration}, MSE={mse} for SMILES={SMILES}, novel={is_novel}\")\n",
|
645 |
+
" if mse < threshold:\n",
|
646 |
+
" print(f\"Threshold met at iteration {iteration+1}\")\n",
|
647 |
+
" break\n",
|
648 |
+
" else:\n",
|
649 |
+
" print (f\"{SMILES} is not novel or not valid, validity: {is_valid_smiles(SMILES)}.\")\n",
|
650 |
+
" except Exception as e:\n",
|
651 |
+
" print(f\"Error during iteration {iteration+1}: {e}\")\n",
|
652 |
+
" continue\n",
|
653 |
+
"\n",
|
654 |
+
" # Sorting records based on MSE (most accurate first)\n",
|
655 |
+
" records.sort(key=lambda x: x[2])\n",
|
656 |
+
"\n",
|
657 |
+
" # Visualizing the best performing molecule\n",
|
658 |
+
" best_SMILES, best_predicted, best_mse, is_novel = records[0]\n",
|
659 |
+
"\n",
|
660 |
+
" print (\"Best SILES: \", best_SMILES)\n",
|
661 |
+
" try:\n",
|
662 |
+
" print (f\"{best_SMILES} is novel: {is_novel}\")\n",
|
663 |
+
" \n",
|
664 |
+
" sns.set_style(\"whitegrid\")\n",
|
665 |
+
" \n",
|
666 |
+
" visualize_pred_vs_target (target, best_predicted, labels, dir_path=dir_path, best_SMILES=best_SMILES,sample_count=0)\n",
|
667 |
+
" \n",
|
668 |
+
" print(f\"Process completed. Results saved to {csv_path}.\") \n",
|
669 |
+
" visualize_SMILES(best_SMILES, dir_path=dir_path, root=f'{target}_BEST')\n",
|
670 |
+
"\n",
|
671 |
+
" print(f\"Compute molecular structure, UFF eq, Gasteiger, etc.\") \n",
|
672 |
+
" \n",
|
673 |
+
" compute_gasteiger (best_SMILES, SMILES_dir=dir_path, target= np.array(best_predicted))\n",
|
674 |
+
"\n",
|
675 |
+
" mol = Chem.MolFromSmiles(best_SMILES)\n",
|
676 |
+
" inchi_str = Chem.MolToInchi(mol)\n",
|
677 |
+
" print(f\"InChI String of {best_SMILES}:\", inchi_str)\n",
|
678 |
+
" \n",
|
679 |
+
" \n",
|
680 |
+
" except Exception as e:\n",
|
681 |
+
" print(f\"Processing/visualization failed for {best_SMILES}: {e}\")\n",
|
682 |
+
"\n",
|
683 |
+
" # Writing records to a CSV file\n",
|
684 |
+
" df = pd.DataFrame(records, columns=['SMILES', 'Predicted Properties', 'MSE', 'is_novel'])\n",
|
685 |
+
" csv_path = os.path.join(dir_path, 'SMILES_designs.csv')\n",
|
686 |
+
" df.to_csv(csv_path, index=False)\n",
|
687 |
+
"\n",
|
688 |
+
" # Plot MSE against the index (which now corresponds to the ranking)\n",
|
689 |
+
" plt.figure(figsize=(10, 8)) # Adjust the size as needed\n",
|
690 |
+
" plt.plot(df['SMILES'], df['MSE'], 'o', markersize=5) # 'o' for circular markers\n",
|
691 |
+
" \n",
|
692 |
+
" # Adding labels for each point with the SMILES string\n",
|
693 |
+
" for i, txt in enumerate(df['SMILES']):\n",
|
694 |
+
" plt.annotate(txt, (i, df['MSE'].iloc[i]), fontsize=8, rotation=45, ha='right')\n",
|
695 |
+
" \n",
|
696 |
+
" visualize_over_SMILES (df,N_max=N_max,SMILES_dir=SMILES_dir,\n",
|
697 |
+
" lower_bound = lower_bound,remove_duplicates=remove_duplicates,\n",
|
698 |
+
" upper_bound = upper_bound, target=target)\n",
|
699 |
+
" return df \n",
|
700 |
+
"\n",
|
701 |
+
"from rdkit import Chem\n",
|
702 |
+
"from rdkit.Chem import Draw\n",
|
703 |
+
"import os\n",
|
704 |
+
"\n",
|
705 |
+
"def visualize_smiles_and_save(smiles_list, per_row=4, dir_path='./', root=''):\n",
|
706 |
+
" \"\"\"\n",
|
707 |
+
" Visualizes a list of molecules from their SMILES strings with labels, checks for validity, \n",
|
708 |
+
" and saves the visualization as an SVG file.\n",
|
709 |
+
" \n",
|
710 |
+
" Parameters:\n",
|
711 |
+
" - smiles_list: List of SMILES strings to visualize.\n",
|
712 |
+
" - per_row: Number of molecule images per row in the assembly.\n",
|
713 |
+
" - dir_path: Directory path where the SVG file will be saved.\n",
|
714 |
+
" \"\"\"\n",
|
715 |
+
" if not os.path.exists(dir_path):\n",
|
716 |
+
" os.makedirs(dir_path)\n",
|
717 |
+
" valid_molecules = []\n",
|
718 |
+
" valid_smiles = [] # To store valid SMILES strings for labeling\n",
|
719 |
+
" for smile in smiles_list:\n",
|
720 |
+
" mol = Chem.MolFromSmiles(smile)\n",
|
721 |
+
" if mol: # If the molecule is valid\n",
|
722 |
+
" valid_molecules.append(mol)\n",
|
723 |
+
" valid_smiles.append(smile) # Add the valid SMILES string\n",
|
724 |
+
" \n",
|
725 |
+
" # Proceed only if there are valid molecules\n",
|
726 |
+
" if not valid_molecules:\n",
|
727 |
+
" print(\"No valid molecules found in the provided SMILES strings.\")\n",
|
728 |
+
" return\n",
|
729 |
+
" \n",
|
730 |
+
" # Ensure the directory exists\n",
|
731 |
+
" if not os.path.exists(dir_path):\n",
|
732 |
+
" os.makedirs(dir_path)\n",
|
733 |
+
" \n",
|
734 |
+
" # Define the SVG file path\n",
|
735 |
+
" svg_file_path = os.path.join(dir_path, f'molecules_with_labels_{root}.svg')\n",
|
736 |
+
" \n",
|
737 |
+
" # Use RDKit to draw the molecules grid with labels\n",
|
738 |
+
" fig = Draw.MolsToGridImage(valid_molecules, molsPerRow=per_row, subImgSize=(200, 200), \n",
|
739 |
+
" legends=valid_smiles, useSVG=True)\n",
|
740 |
+
" \n",
|
741 |
+
" # Saving the SVG content to a file\n",
|
742 |
+
" with open(svg_file_path, 'w') as svg_file:\n",
|
743 |
+
" svg_file.write(fig.data)\n",
|
744 |
+
" display (fig)\n",
|
745 |
+
" \n",
|
746 |
+
" print(f\"Visualization saved as SVG at: {svg_file_path}\")\n",
|
747 |
+
"\n",
|
748 |
+
" return valid_smiles \n",
|
749 |
+
"\n",
|
750 |
+
"def plot_MSE_over_SMILES (df_design,N_max=24,\n",
|
751 |
+
" lower_bound = 0.0,\n",
|
752 |
+
" upper_bound = 0.08, SMILES_dir='./', target='', ):\n",
|
753 |
+
" \n",
|
754 |
+
" if not os.path.exists(SMILES_dir):\n",
|
755 |
+
" os.makedirs(SMILES_dir) \n",
|
756 |
+
" df_sorted = df_design[:N_max].sort_values('MSE',ascending=False).reset_index(drop=True)\n",
|
757 |
+
"\n",
|
758 |
+
" \n",
|
759 |
+
" df_plot=df_sorted[(df_sorted['MSE'] > lower_bound) & (df_sorted['MSE'] < upper_bound)]\n",
|
760 |
+
" \n",
|
761 |
+
" # Plot MSE against the index (which now corresponds to the ranking)\n",
|
762 |
+
" fig, ax = plt.subplots(figsize=(8, 7))\n",
|
763 |
+
" plt.plot(df_plot['SMILES'], df_plot['MSE'], 'o-', markersize=5, ) # 'o' for circular markers\n",
|
764 |
+
" \n",
|
765 |
+
" # Improving the plot aesthetics\n",
|
766 |
+
" plt.xticks(rotation=90) # Rotate the x-axis labels for better readability\n",
|
767 |
+
" plt.xlabel('Molecule SMILES')\n",
|
768 |
+
" plt.ylabel('MSE')\n",
|
769 |
+
" #plt.title('Ordered from Best to Worst')\n",
|
770 |
+
" plt.tight_layout() # Adjust the layout to make room for the rotated x-axis labels\n",
|
771 |
+
" plt.savefig(SMILES_dir+f'SMILES_over_MSE_{target}.svg', format='svg')\n",
|
772 |
+
" plt.show()\n",
|
773 |
+
" \n",
|
774 |
+
"def visualize_over_SMILES (df_design,N_max=24,per_row=20,SMILES_dir='./',\n",
|
775 |
+
" lower_bound = 0.0,\n",
|
776 |
+
" upper_bound = 0.08, target='', remove_duplicates=True):\n",
|
777 |
+
"\n",
|
778 |
+
" if remove_duplicates:\n",
|
779 |
+
" # Example: Keep the entry with the best MSE among the novel molecules for each SMILES\n",
|
780 |
+
" df_design = df_design.sort_values(['MSE', 'is_novel', 'SMILES', ], ascending=[True, False, True]) \\\n",
|
781 |
+
" .drop_duplicates(subset='SMILES', keep='first')\n",
|
782 |
+
"\n",
|
783 |
+
" df_design.reset_index(drop=True, inplace=True)\n",
|
784 |
+
" df_design.to_csv(f'{SMILES_dir}/sorted_noduplicates_{N_max}.csv', index=False)\n",
|
785 |
+
" \n",
|
786 |
+
" valid_smiles=visualize_smiles_and_save(list(df_design['SMILES'][:N_max]), per_row=per_row, dir_path=SMILES_dir, root=f'{target}')\n",
|
787 |
+
" \n",
|
788 |
+
" smiles_df = pd.DataFrame(valid_smiles, columns=[\"SMILES\"])\n",
|
789 |
+
"\n",
|
790 |
+
" # Save the DataFrame to a CSV file\n",
|
791 |
+
" file_path = \"/smiles_data.csv\"\n",
|
792 |
+
" smiles_df.to_csv(f'{SMILES_dir}/valid_SMILES_{N_max}.csv', index=False )\n",
|
793 |
+
" \n",
|
794 |
+
" fig, ax = plt.subplots(figsize=(8, 5))\n",
|
795 |
+
" \n",
|
796 |
+
" df_plot=df_design[(df_design['MSE'] > lower_bound) & (df_design['MSE'] < upper_bound)]\n",
|
797 |
+
" df_plot.plot(kind='kde', color='darkblue', label='KDE', ax=ax)\n",
|
798 |
+
" \n",
|
799 |
+
" # Plot histogram with density=True for probability density representation\n",
|
800 |
+
" plt.hist(df_design['MSE'], density=True, alpha=0.5, color='skyblue', label='Histogram',bins=50, \n",
|
801 |
+
" range=[lower_bound,upper_bound]\n",
|
802 |
+
" )\n",
|
803 |
+
" plt.xlim(lower_bound, upper_bound)\n",
|
804 |
+
" plt.title('Density and Histogram Plot of MSE')\n",
|
805 |
+
" plt.xlabel('MSE')\n",
|
806 |
+
" plt.ylabel('Density')\n",
|
807 |
+
" \n",
|
808 |
+
" # Adding a legend to distinguish between the KDE and Histogram\n",
|
809 |
+
" plt.legend()\n",
|
810 |
+
" \n",
|
811 |
+
" plt.savefig(SMILES_dir+f'mse_histogram_{target}.svg', format='svg')\n",
|
812 |
+
" plt.show()\n",
|
813 |
+
"\n",
|
814 |
+
" plot_MSE_over_SMILES (df_design,N_max=N_max,\n",
|
815 |
+
" lower_bound = lower_bound,\n",
|
816 |
+
" upper_bound = upper_bound, target=target,SMILES_dir=SMILES_dir)\n",
|
817 |
+
" \n",
|
818 |
+
" return df_design\n",
|
819 |
+
"\n",
|
820 |
+
"import numpy as np\n",
|
821 |
+
"import matplotlib.pyplot as plt\n",
|
822 |
+
"import pandas as pd\n",
|
823 |
+
"from pandas.plotting import parallel_coordinates\n",
|
824 |
+
"\n",
|
825 |
+
"def plot_change_in_design(original, labels, target, SMILES_dir='./'):\n",
|
826 |
+
" if not os.path.exists(SMILES_dir):\n",
|
827 |
+
" os.makedirs(SMILES_dir)\n",
|
828 |
+
" \n",
|
829 |
+
" # Create a DataFrame to hold the original and target vectors with labels\n",
|
830 |
+
" df = pd.DataFrame([original, target], columns=labels)\n",
|
831 |
+
" df['Version'] = ['Original', 'Target'] # Add a 'Version' column for coloring\n",
|
832 |
+
" \n",
|
833 |
+
" # Plotting\n",
|
834 |
+
" plt.figure(figsize=(7, 4))\n",
|
835 |
+
" parallel_coordinates(df, 'Version', color=['blue', 'red'])\n",
|
836 |
+
" plt.title('Original vs Target Values across Properties')\n",
|
837 |
+
" plt.xticks(rotation=45)\n",
|
838 |
+
" plt.tight_layout()\n",
|
839 |
+
" \n",
|
840 |
+
" # Annotating changes with thicker arrows pointing towards the target\n",
|
841 |
+
" for i, label in enumerate(labels):\n",
|
842 |
+
" if original[i] < target[i]: # If the target value is greater, arrow points upwards\n",
|
843 |
+
" plt.annotate('', xy=(i, target[i]), xytext=(i, original[i]),\n",
|
844 |
+
" arrowprops=dict(arrowstyle=\"->\", color='black', lw=2))\n",
|
845 |
+
" else: # If the target value is lesser, arrow points downwards\n",
|
846 |
+
" plt.annotate('', xy=(i, target[i]), xytext=(i, original[i]),\n",
|
847 |
+
" arrowprops=dict(arrowstyle=\"->\", color='black', lw=2))\n",
|
848 |
+
" \n",
|
849 |
+
" # Save the plot as an SVG file in the specified directory\n",
|
850 |
+
" plt.savefig(SMILES_dir + \"parallel_coordinates_changes_direction.svg\", format=\"svg\")\n",
|
851 |
+
" \n",
|
852 |
+
" plt.show()\n",
|
853 |
+
" \n",
|
854 |
+
"def visualize_pred_vs_target (target, best_predicted, labels, dir_path='./', best_SMILES='',sample_count=0): \n",
|
855 |
+
" if not os.path.exists(dir_path):\n",
|
856 |
+
" os.makedirs(dir_path)\n",
|
857 |
+
" sns.set_style(\"whitegrid\")\n",
|
858 |
+
" plt.gcf().set_facecolor('white')\n",
|
859 |
+
" \n",
|
860 |
+
" x = np.arange(len(labels)) # Label locations\n",
|
861 |
+
" width = 0.35 # Width of the bars\n",
|
862 |
+
" \n",
|
863 |
+
" fig, ax = plt.subplots(figsize=(9, 5))\n",
|
864 |
+
" rects1 = ax.bar(x - width/2, target, width, label='Target')\n",
|
865 |
+
" rects2 = ax.bar(x + width/2, best_predicted, width, label='Predicted properties')\n",
|
866 |
+
" \n",
|
867 |
+
" # Add some text for labels, title and custom x-axis tick labels, etc.\n",
|
868 |
+
" ax.set_ylabel('Values')\n",
|
869 |
+
" ax.set_title(f'Comparison of Target and Predicted Properties, {best_SMILES}')\n",
|
870 |
+
" ax.set_xticks(x)\n",
|
871 |
+
" ax.set_xticklabels(labels, rotation=45, ha=\"right\")\n",
|
872 |
+
" ax.legend()\n",
|
873 |
+
" fig.tight_layout()\n",
|
874 |
+
" plt.savefig(f\"{dir_path}/QM9_best_design_{target}_barplot_{sample_count}.svg\")\n",
|
875 |
+
" plt.show()\n",
|
876 |
+
" #plt.show()\n",
|
877 |
+
"\n",
|
878 |
+
"from rdkit import Chem\n",
|
879 |
+
"from rdkit.Chem import AllChem, Draw\n",
|
880 |
+
"from rdkit.Chem import AllChem, rdDepictor\n",
|
881 |
+
"from rdkit.Chem.Draw import rdMolDraw2D\n",
|
882 |
+
" \n",
|
883 |
+
"def prime_messages (SMILES_chitin_monomer, target, N=1):\n",
|
884 |
+
" messages=[]\n",
|
885 |
+
" for i in range (N):\n",
|
886 |
+
" \n",
|
887 |
+
" line=f'GenerateMolecularProperties<{return_str( target)}>'\n",
|
888 |
+
" messages.append ({\"role\": \"user\", \"content\": line}, )\n",
|
889 |
+
" line=f'[{SMILES_chitin_monomer}]'\n",
|
890 |
+
" messages.append ({\"role\": \"assistant\", \"content\": line}, )\n",
|
891 |
+
" \n",
|
892 |
+
" return messages\n",
|
893 |
+
"\n",
|
894 |
+
"from rdkit import Chem\n",
|
895 |
+
"from rdkit.Chem import AllChem\n",
|
896 |
+
"\n",
|
897 |
+
"def smiles_to_3d(smiles, num_confs=100):\n",
|
898 |
+
" mol = Chem.MolFromSmiles(smiles)\n",
|
899 |
+
" if mol is None:\n",
|
900 |
+
" print(\"Failed to create molecule from SMILES\")\n",
|
901 |
+
" return None\n",
|
902 |
+
"\n",
|
903 |
+
" mol = Chem.AddHs(mol)\n",
|
904 |
+
" params = AllChem.ETKDGv3()\n",
|
905 |
+
" params.randomSeed = 42\n",
|
906 |
+
" if not AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, params=params):\n",
|
907 |
+
" print(\"Embedding conformations failed.\")\n",
|
908 |
+
" return None\n",
|
909 |
+
"\n",
|
910 |
+
" results = []\n",
|
911 |
+
" for conf_id in range(num_confs):\n",
|
912 |
+
" ff = AllChem.MMFFGetMoleculeForceField(mol, AllChem.MMFFGetMoleculeProperties(mol), confId=conf_id)\n",
|
913 |
+
" if ff is None:\n",
|
914 |
+
" print(f\"Failed to setup MMFF for conformer {conf_id}\")\n",
|
915 |
+
" continue\n",
|
916 |
+
" energy = ff.Minimize()\n",
|
917 |
+
" results.append((conf_id, ff.CalcEnergy()))\n",
|
918 |
+
"\n",
|
919 |
+
" if not results:\n",
|
920 |
+
" print(\"No successful energy minimization.\")\n",
|
921 |
+
" return None\n",
|
922 |
+
" \n",
|
923 |
+
"\n",
|
924 |
+
" best_conf = mol.GetConformer(min_energy_conf[0])\n",
|
925 |
+
" best_mol = Chem.Mol(mol)\n",
|
926 |
+
" best_mol.RemoveAllConformers()\n",
|
927 |
+
" best_mol.AddConformer(best_conf, assignId=True)\n",
|
928 |
+
"\n",
|
929 |
+
" coords = best_conf.GetPositions()\n",
|
930 |
+
" atom_symbols = [atom.GetSymbol() for atom in best_mol.GetAtoms()]\n",
|
931 |
+
" geometry = '\\n'.join(f'{atom} {coord[0]} {coord[1]} {coord[2]}' for atom, coord in zip(atom_symbols, coords))\n",
|
932 |
+
"\n",
|
933 |
+
" display (best_mol)\n",
|
934 |
+
" \n",
|
935 |
+
" return geometry, best_mol"
|
936 |
+
]
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"cell_type": "markdown",
|
940 |
+
"id": "23f18039-4441-496c-89b0-9e467eaac83e",
|
941 |
+
"metadata": {},
|
942 |
+
"source": [
|
943 |
+
"### Property calculation as possible starting point for design iterations "
|
944 |
+
]
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"cell_type": "code",
|
948 |
+
"execution_count": null,
|
949 |
+
"id": "6519474d-4e03-4273-a79e-454d5845e6d6",
|
950 |
+
"metadata": {
|
951 |
+
"scrolled": true
|
952 |
+
},
|
953 |
+
"outputs": [],
|
954 |
+
"source": [
|
955 |
+
"SMILES_START='O1C2C3OC2C13'\n",
|
956 |
+
"properties,_=avg_properties_from_SMILES (model, tokenizer, SMILES_START, SMILES_dir=SMILES_dir,\n",
|
957 |
+
" temperature=0.3, top_k=256,top_p=0.9, num_beams=1, repetition_penalty=1.,\n",
|
958 |
+
" labels=labels, N_prop=3, plot_results=True)\n"
|
959 |
+
]
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"cell_type": "code",
|
963 |
+
"execution_count": null,
|
964 |
+
"id": "198840ea-21f8-41eb-b62a-bc325261b731",
|
965 |
+
"metadata": {},
|
966 |
+
"outputs": [],
|
967 |
+
"source": [
|
968 |
+
"# Retrieve the scaling parameters\n",
|
969 |
+
"data_min = scaler.data_min_\n",
|
970 |
+
"data_max = scaler.data_max_\n",
|
971 |
+
"scale = scaler.scale_\n",
|
972 |
+
"feature_min = scaler.min_\n",
|
973 |
+
"\n",
|
974 |
+
"print(\"Feature Scaling Parameters:\")\n",
|
975 |
+
"print(\"{:<20} {:<20} {:<20} {:<20}\".format(\"Feature Index\", \"Min Value\", \"Max Value\", \"Scale Factor\"))\n",
|
976 |
+
"for i in range(len(data_min)):\n",
|
977 |
+
" print(\"{:<20} {:<20} {:<20} {:<20}\".format(i, data_min[i], data_max[i], scale[i]))\n",
|
978 |
+
"\n",
|
979 |
+
"print(\"\\nPer-feature Shifts (Min):\")\n",
|
980 |
+
"for i, min_val in enumerate(feature_min):\n",
|
981 |
+
" print(\"Feature {}: {:.6f}\".format(i, min_val))"
|
982 |
+
]
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"cell_type": "markdown",
|
986 |
+
"id": "0dd1f217-74c0-40f3-8edc-4b610c12e0ea",
|
987 |
+
"metadata": {},
|
988 |
+
"source": [
|
989 |
+
"### Molecular design: Iterative solution "
|
990 |
+
]
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"cell_type": "code",
|
994 |
+
"execution_count": null,
|
995 |
+
"id": "fc2747b6-90cc-4d42-bf93-bb39dc6d9198",
|
996 |
+
"metadata": {},
|
997 |
+
"outputs": [],
|
998 |
+
"source": [
|
999 |
+
"import copy \n",
|
1000 |
+
"properties=y_test[4]\n",
|
1001 |
+
"\n",
|
1002 |
+
"#Create new set of properties based on existing molecule (from test set)\n",
|
1003 |
+
"properties_new=copy.deepcopy (properties)\n",
|
1004 |
+
"properties_new[0]=properties[0]+0.2\n",
|
1005 |
+
"properties_new[1]=properties[1]+0.2\n",
|
1006 |
+
"plot_change_in_design (properties, labels, properties_new,SMILES_dir)"
|
1007 |
+
]
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"cell_type": "code",
|
1011 |
+
"execution_count": null,
|
1012 |
+
"id": "c5f9b9c5-c746-48d1-841a-a2113d13279e",
|
1013 |
+
"metadata": {
|
1014 |
+
"scrolled": true
|
1015 |
+
},
|
1016 |
+
"outputs": [],
|
1017 |
+
"source": [
|
1018 |
+
"df_design=design_molecule_loop (model, tokenizer, np.array(properties_new), SMILES_LIST=SMILES_LIST, dir_path=SMILES_dir,\n",
|
1019 |
+
" temperature_pred=0.1, temperature_gen=0.3, top_k=32,top_p=0.1, repetition_penalty=1.,\n",
|
1020 |
+
" threshold=0.001, N_max=64, \n",
|
1021 |
+
" N_attempts_for_forward=6,\n",
|
1022 |
+
" )"
|
1023 |
+
]
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"cell_type": "code",
|
1027 |
+
"execution_count": null,
|
1028 |
+
"id": "8c5be323-aa47-49dd-bc44-be74936c62c8",
|
1029 |
+
"metadata": {
|
1030 |
+
"scrolled": true
|
1031 |
+
},
|
1032 |
+
"outputs": [],
|
1033 |
+
"source": [
|
1034 |
+
"visualize_over_SMILES (df_design,N_max=30,SMILES_dir=SMILES_dir,per_row=5,\n",
|
1035 |
+
" lower_bound = 0.0, remove_duplicates=True,\n",
|
1036 |
+
" upper_bound = 0.02, target=np.array(properties_new))\n",
|
1037 |
+
"\n",
|
1038 |
+
"target=np.array(properties_new)\n",
|
1039 |
+
"best_SMILES, best_predicted, best_mse, is_novel = df_design_2.iloc[5]\n",
|
1040 |
+
"\n",
|
1041 |
+
"print (\"Best SILES: \", best_SMILES)\n",
|
1042 |
+
"print (f\"{best_SMILES} is novel: {is_novel}\")\n",
|
1043 |
+
"\n",
|
1044 |
+
"sns.set_style(\"whitegrid\")\n",
|
1045 |
+
"\n",
|
1046 |
+
"visualize_pred_vs_target (target, best_predicted, labels, dir_path=SMILES_dir, best_SMILES=best_SMILES,sample_count=0)\n",
|
1047 |
+
" \n",
|
1048 |
+
"visualize_SMILES(best_SMILES, dir_path=SMILES_dir, root=f'{target}_BEST')"
|
1049 |
+
]
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"cell_type": "code",
|
1053 |
+
"execution_count": null,
|
1054 |
+
"id": "25fd7dbe-95fd-4169-86e9-b05e86bbfb3a",
|
1055 |
+
"metadata": {
|
1056 |
+
"scrolled": true
|
1057 |
+
},
|
1058 |
+
"outputs": [],
|
1059 |
+
"source": [
|
1060 |
+
"target=np.array(properties_new)\n",
|
1061 |
+
"best_SMILES, best_predicted, best_mse, is_novel = df_design_2.iloc[5]\n",
|
1062 |
+
"\n",
|
1063 |
+
"print (\"Best SILES: \", best_SMILES)\n",
|
1064 |
+
"print (f\"{best_SMILES} is novel: {is_novel}\")\n",
|
1065 |
+
"\n",
|
1066 |
+
"sns.set_style(\"whitegrid\")\n",
|
1067 |
+
"\n",
|
1068 |
+
"visualize_pred_vs_target (target, best_predicted, labels, dir_path=SMILES_dir, best_SMILES=best_SMILES,sample_count=0)\n",
|
1069 |
+
" \n",
|
1070 |
+
"visualize_SMILES(best_SMILES, dir_path=SMILES_dir, root=f'{target}_BEST')"
|
1071 |
+
]
|
1072 |
+
}
|
1073 |
+
],
|
1074 |
+
"metadata": {
|
1075 |
+
"environment": {
|
1076 |
+
"kernel": "python3",
|
1077 |
+
"name": ".m115",
|
1078 |
+
"type": "gcloud",
|
1079 |
+
"uri": "gcr.io/deeplearning-platform-release/:m115"
|
1080 |
+
},
|
1081 |
+
"kernelspec": {
|
1082 |
+
"display_name": "Python 3 (ipykernel)",
|
1083 |
+
"language": "python",
|
1084 |
+
"name": "python3"
|
1085 |
+
},
|
1086 |
+
"language_info": {
|
1087 |
+
"codemirror_mode": {
|
1088 |
+
"name": "ipython",
|
1089 |
+
"version": 3
|
1090 |
+
},
|
1091 |
+
"file_extension": ".py",
|
1092 |
+
"mimetype": "text/x-python",
|
1093 |
+
"name": "python",
|
1094 |
+
"nbconvert_exporter": "python",
|
1095 |
+
"pygments_lexer": "ipython3",
|
1096 |
+
"version": "3.11.7"
|
1097 |
+
}
|
1098 |
+
},
|
1099 |
+
"nbformat": 4,
|
1100 |
+
"nbformat_minor": 5
|
1101 |
+
}
|