A model fine-tuned for sentiment analysis based on [vinai/phobert-base](https://huggingface.co/vinai/phobert-base). Labels: - NEG: Negative - POS: Positive - NEU: Neutral Dataset: Comments on Shoppe (https://shopee.vn/) ## Usage from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("lamsytan/sentiment-analysis-base-phobert") model = AutoModelForSequenceClassification.from_pretrained("lamsytan/sentiment-analysis-base-phobert") sentence = "Áo đẹp lắm nhá lần sau sẽ ghé tiếp ạ" inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=-1) print(probabilities.tolist()) # Output: # [[0.010827462188899517, 0.9538241624832153, 0.035348404198884964]] # ^ ^ ^ # NEG POS NEU