--- tags: - flair - token-classification - sequence-tagger-model language: uk datasets: - ner-uk model-index: - name: flair-uk-ner results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8572 - name: NER Recall type: recall value: 0.8516 - name: NER F Score type: f_score value: 0.8544 widget: - text: "Президент Володимир Зеленський пояснив, що наразі діалог із режимом Володимира путіна неможливий, адже агресор обрав курс на знищення українського народу. За словами Зеленського цей режим РФ виявляє неповагу до суверенітету і територіальної цілісності України." license: mit --- # flair-uk-ner ## Model description **flair-uk-ner** is a Flair model that is ready to use for **Named Entity Recognition**. It is based on flair embeddings, that I've trained for Ukrainian language (available [here](https://huggingface.co/dchaplinsky/flair-uk-backward) and [here](https://huggingface.co/dchaplinsky/flair-uk-forward)) and has nice performance and a very **small size** (just 72mb!). It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PERS) and Miscellaneous (MISC). Results: - F-score (micro) **0.8544** - F-score (macro) **0.7406** - Accuracy **0.798** precision recall f1-score support PERS 0.9231 0.9374 0.9302 1678 LOC 0.8204 0.8429 0.8315 401 ORG 0.6708 0.6245 0.6468 261 MISC 0.6029 0.5125 0.5541 240 micro avg 0.8572 0.8516 0.8544 2580 macro avg 0.7543 0.7293 0.7406 2580 weighted avg 0.8518 0.8516 0.8512 2580 The model was fine-tuned on the [NER-UK dataset](https://github.com/lang-uk/ner-uk), released by the [lang-uk](https://lang.org.ua). Training code is also available [here](https://github.com/lang-uk/flair-ner). Copyright: [Dmytro Chaplynskyi](https://twitter.com/dchaplinsky), [lang-uk project](https://lang.org.ua), 2022