File size: 7,627 Bytes
6fc81cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa14ba4
 
 
 
 
 
 
6fc81cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa14ba4
6fc81cd
 
 
 
 
 
 
 
 
 
fa14ba4
6fc81cd
 
 
 
 
fa14ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc81cd
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
base_model: gpt2
library_name: Distily
license: mit
tags:
- generated_from_trainer
model-index:
- name: distily_bench_gpt2_activation_loss_c
  results: []
---

# distily_bench_gpt2_activation_loss_c

This student model is distilled from the teacher model [gpt2](https://huggingface.co/gpt2) using the dataset (unspecified).

The [Distily](https://github.com/lapp0/distily) library was used for this distillation.

It achieves the following results on the evaluation set:
- eval_enwikippl: 215.5059
- eval_frwikippl: 1193.6056
- eval_zhwikippl: 627.1483
- eval_loss: 1.2009
- eval_runtime: 85.3591
- eval_samples_per_second: 58.576
- eval_steps_per_second: 7.322

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed
-->

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- distillation_objective: DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl, layer_mapper=None, projector=None), hs_loss_component=LossComponent(label=hs, weight=2.0, loss_fn=mse, layer_mapper=None, projector=None), attn_loss_component=LossComponent(label=attn, weight=0, loss_fn=None, layer_mapper=None, projector=None))
- train_embeddings: True
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 1.0

### Resource Usage
Peak GPU Memory: 8.0873 GB

### Eval-Phase Metrics
| step | epoch | enwikippl | frwikippl | loss | runtime | samples_per_second | steps_per_second | zhwikippl |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| **teacher eval** |  | 30.2086 | 57.2728 |  |  |  |  | 18.1784 |
| 0 | 0 | 56314.7695 | 59887.2773 | 5.8256 | 85.6711 | 58.363 | 7.295 | 59033.8086 |
| 1000 | 0.0162 | 703.3142 | 4236.9004 | 1.8490 | 85.6638 | 58.368 | 7.296 | 11133.5088 |
| 2000 | 0.0323 | 504.8312 | 3192.5520 | 1.6764 | 85.4461 | 58.516 | 7.315 | 1842.1659 |
| 3000 | 0.0485 | 421.6048 | 2827.9453 | 1.5711 | 85.6065 | 58.407 | 7.301 | 841.4271 |
| 4000 | 0.0646 | 359.8385 | 2300.7822 | 1.4898 | 85.5248 | 58.463 | 7.308 | 1321.4115 |
| 5000 | 0.0808 | 320.1989 | 1782.2493 | 1.4134 | 85.6041 | 58.408 | 7.301 | 921.9020 |
| 6000 | 0.0970 | 279.3613 | 1572.2640 | 1.3457 | 85.4507 | 58.513 | 7.314 | 775.6033 |
| 7000 | 0.1131 | 252.3406 | 1452.0632 | 1.2901 | 85.4137 | 58.539 | 7.317 | 675.1237 |
| 8000 | 0.1293 | 230.5502 | 1345.9784 | 1.2423 | 85.9632 | 58.164 | 7.271 | 594.2899 |
| 9000 | 0.1455 | 215.5059 | 1193.6056 | 1.2009 | 85.3591 | 58.576 | 7.322 | 627.1483 |
| 10000 | 0.1616 | 194.5708 | 1147.0729 | 1.1501 | 85.2878 | 58.625 | 7.328 | 681.0092 |
| 11000 | 0.1778 | 179.9636 | 1066.1221 | 1.1062 | 85.2181 | 58.673 | 7.334 | 556.0541 |
| 12000 | 0.1939 | 165.4222 | 900.6642 | 1.0627 | 85.2275 | 58.667 | 7.333 | 517.4376 |
| 13000 | 0.2101 | 155.7605 | 880.5709 | 1.0328 | 85.4983 | 58.481 | 7.31 | 504.9460 |
| 14000 | 0.2263 | 148.5429 | 820.9711 | 1.0057 | 85.4522 | 58.512 | 7.314 | 432.5430 |
| 15000 | 0.2424 | 142.2881 | 752.3494 | 0.9840 | 85.291 | 58.623 | 7.328 | 371.8599 |
| 16000 | 0.2586 | 138.4622 | 756.4453 | 0.9709 | 85.5234 | 58.464 | 7.308 | 645.2426 |
| 17000 | 0.2747 | 136.4131 | 709.4854 | 0.9606 | 85.2257 | 58.668 | 7.333 | 653.3060 |
| 18000 | 0.2909 | 133.8840 | 722.0003 | 0.9493 | 85.2137 | 58.676 | 7.335 | 538.2999 |
| 19000 | 0.3071 | 131.9743 | 726.1355 | 0.9435 | 85.2513 | 58.65 | 7.331 | 595.8792 |
| 20000 | 0.3232 | 129.7892 | 706.8889 | 0.9335 | 85.2873 | 58.625 | 7.328 | 420.4131 |
| 21000 | 0.3394 | 127.3829 | 659.1836 | 0.9238 | 85.0899 | 58.761 | 7.345 | 377.2113 |
| 22000 | 0.3556 | 125.8100 | 627.8823 | 0.9149 | 85.107 | 58.75 | 7.344 | 378.1191 |
| 23000 | 0.3717 | 124.3241 | 675.1288 | 0.9101 | 85.2843 | 58.627 | 7.328 | 407.0987 |
| 24000 | 0.3879 | 121.7446 | 648.3518 | 0.9012 | 85.2715 | 58.636 | 7.33 | 370.7195 |
| 25000 | 0.4040 | 121.8676 | 673.0380 | 0.8998 | 85.4414 | 58.52 | 7.315 | 401.9131 |
| 26000 | 0.4202 | 121.1881 | 598.3207 | 0.8906 | 85.1925 | 58.691 | 7.336 | 455.3015 |
| 27000 | 0.4364 | 119.8778 | 614.9578 | 0.8859 | 85.3813 | 58.561 | 7.32 | 291.9007 |
| 28000 | 0.4525 | 119.7104 | 589.9427 | 0.8831 | 85.3094 | 58.61 | 7.326 | 313.4760 |
| 29000 | 0.4687 | 118.6553 | 652.7549 | 0.8794 | 85.2629 | 58.642 | 7.33 | 299.0819 |
| 30000 | 0.4848 | 118.7475 | 602.5115 | 0.8775 | 85.4036 | 58.546 | 7.318 | 355.6388 |
| 31000 | 0.5010 | 118.1863 | 610.4652 | 0.8759 | 85.1743 | 58.703 | 7.338 | 275.1334 |
| 32000 | 0.5172 | 117.4726 | 628.6798 | 0.8750 | 85.2859 | 58.626 | 7.328 | 301.3671 |
| 33000 | 0.5333 | 115.1694 | 602.0021 | 0.8713 | 85.2629 | 58.642 | 7.33 | 277.0137 |
| 34000 | 0.5495 | 115.8600 | 574.1846 | 0.8689 | 85.1695 | 58.706 | 7.338 | 277.8658 |
| 35000 | 0.5657 | 114.0391 | 537.2504 | 0.8629 | 85.3032 | 58.614 | 7.327 | 307.7109 |
| 36000 | 0.5818 | 115.1694 | 602.9366 | 0.8660 | 85.3327 | 58.594 | 7.324 | 328.2996 |
| 37000 | 0.5980 | 113.9152 | 575.0357 | 0.8590 | 85.7449 | 58.313 | 7.289 | 332.3134 |
| 38000 | 0.6141 | 114.4739 | 573.7802 | 0.8618 | 85.7064 | 58.339 | 7.292 | 270.8683 |
| 39000 | 0.6303 | 112.6310 | 546.8427 | 0.8543 | 85.2884 | 58.625 | 7.328 | 289.1075 |
| 40000 | 0.6465 | 112.8762 | 570.1909 | 0.8537 | 85.2282 | 58.666 | 7.333 | 257.7758 |
| 41000 | 0.6626 | 112.9112 | 548.9287 | 0.8543 | 85.3272 | 58.598 | 7.325 | 325.8972 |
| 42000 | 0.6788 | 111.7424 | 549.7032 | 0.8534 | 85.5416 | 58.451 | 7.306 | 291.7448 |
| 43000 | 0.6949 | 112.2556 | 568.9060 | 0.8524 | 85.2667 | 58.64 | 7.33 | 310.9328 |
| 44000 | 0.7111 | 110.7490 | 603.5746 | 0.8525 | 85.3547 | 58.579 | 7.322 | 269.4612 |
| 45000 | 0.7273 | 112.0378 | 593.0288 | 0.8486 | 85.4267 | 58.53 | 7.316 | 378.8268 |
| 46000 | 0.7434 | 111.5950 | 589.0699 | 0.8492 | 85.0567 | 58.784 | 7.348 | 364.7776 |
| 47000 | 0.7596 | 112.7010 | 588.7380 | 0.8558 | 85.186 | 58.695 | 7.337 | 446.9284 |
| 48000 | 0.7758 | 114.3584 | 519.3724 | 0.8590 | 85.1156 | 58.744 | 7.343 | 2148.5159 |
| 49000 | 0.7919 | 115.1962 | 590.7754 | 0.8648 | 85.1589 | 58.714 | 7.339 | 430.9863 |
| 50000 | 0.8081 | 114.1809 | 614.9578 | 0.8597 | 85.2319 | 58.663 | 7.333 | 309.8965 |
| 51000 | 0.8242 | 112.0117 | 593.5725 | 0.8551 | 85.2128 | 58.677 | 7.335 | 423.6820 |
| 52000 | 0.8404 | 109.5515 | 563.6358 | 0.8457 | 85.2439 | 58.655 | 7.332 | 337.9521 |
| 53000 | 0.8566 | 109.7388 | 550.0908 | 0.8446 | 85.1744 | 58.703 | 7.338 | 412.3510 |
| 54000 | 0.8727 | 111.3959 | 551.1781 | 0.8453 | 85.2832 | 58.628 | 7.329 | 368.3508 |
| 55000 | 0.8889 | 111.1712 | 575.0760 | 0.8450 | 85.1663 | 58.709 | 7.339 | 283.8286 |
| 56000 | 0.9051 | 110.6545 | 557.3918 | 0.8454 | 85.4688 | 58.501 | 7.313 | 360.2272 |
| 57000 | 0.9212 | 110.4055 | 604.0854 | 0.8479 | 85.3777 | 58.563 | 7.32 | 420.6379 |
| 58000 | 0.9374 | 111.5257 | 635.6327 | 0.8466 | 85.6212 | 58.397 | 7.3 | 492.8218 |
| 59000 | 0.9535 | 109.2372 | 581.6412 | 0.8423 | 85.6034 | 58.409 | 7.301 | 366.9761 |
| 60000 | 0.9697 | 108.7379 | 565.1876 | 0.8362 | 85.2814 | 58.629 | 7.329 | 331.8257 |
| 61000 | 0.9859 | 108.9746 | 583.4484 | 0.8370 | 85.1729 | 58.704 | 7.338 | 399.4518 |
| 61875 | 1.0 | 109.4665 | 569.9899 | 0.8351 | 85.5074 | 58.474 | 7.309 | 290.9278 |

### Framework versions
- Distily 0.2.0
- Transformers 4.44.0
- Pytorch 2.3.0
- Datasets 2.21.0