File size: 3,392 Bytes
2b91ced 22f683c 2b91ced 22f683c 2b91ced 22f683c 2b91ced 739061a 22f683c 2b91ced 22f683c 2b91ced 739061a 22f683c 2b91ced 22f683c 7dc5c08 22f683c 739061a 2b91ced 22f683c 2b91ced |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
base_model: gpt2
library_name: distily
license: mit
tags:
- generated_from_trainer
model-index:
- name: distily_bench_gpt2_linear_objectives
results: []
---
# distily_bench_gpt2_optim
This student model is distilled from the teacher model [gpt2](https://huggingface.co/gpt2) using the dataset (unspecified).
The [Distily](https://github.com/lapp0/distily) library was used for this distillation.
It achieves the following results on the evaluation set:
- eval_enwikippl: 524.7870
- eval_frwikippl: 3705.5625
- eval_zhwikippl: 6035.2861
- eval_loss: 2370.7361
- eval_runtime: 21.6322
- eval_samples_per_second: 46.227
- eval_steps_per_second: 11.557
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
-->
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- distillation_objective: LinearObjective(logits_weight=1, logits_loss_fn=<function kl_divergence_loss at 0x7f57c4b07910>, activations_weight=10, activations_loss_fn=<function kl_divergence_loss at 0x7f57c4b07910>, attentions_weight=0, attentions_loss_fn=<function mse_loss at 0x7f57c4b07880>)
- train_embeddings: True
- learning_rate: 4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 1.0
### Resource Usage
Peak GPU Memory: 4.5067 GB
### Eval-Phase Metrics
| step | epoch | enwikippl | frwikippl | loss | runtime | samples_per_second | steps_per_second | zhwikippl |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| **teacher eval** | | 30.2385 | 57.2728 | | | | | 18.1772 |
| 0 | 0 | 55339.3672 | 57682.5742 | 31197.1836 | 21.4398 | 46.642 | 11.661 | 57080.2930 |
| 500 | 0.0808 | 1545.6934 | 7685.4297 | 3209.9360 | 21.4847 | 46.545 | 11.636 | 63830.4023 |
| 1000 | 0.1616 | 1108.6847 | 5659.8701 | 2933.1360 | 21.4559 | 46.607 | 11.652 | 31166.1797 |
| 1500 | 0.2424 | 913.3565 | 4893.8623 | 2798.0161 | 21.5956 | 46.306 | 11.576 | 23215.4258 |
| 2000 | 0.3232 | 813.5310 | 4763.6436 | 2700.0161 | 21.635 | 46.221 | 11.555 | 22568.9238 |
| 2500 | 0.4040 | 747.3608 | 4565.6851 | 2631.0720 | 21.5442 | 46.416 | 11.604 | 18090.1602 |
| 3000 | 0.4848 | 711.6094 | 4255.0127 | 2579.2639 | 21.7116 | 46.058 | 11.515 | 16199.8096 |
| 3500 | 0.5657 | 666.4665 | 4117.3369 | 2530.9441 | 21.5886 | 46.321 | 11.58 | 16435.1426 |
| 4000 | 0.6465 | 638.0192 | 4058.8262 | 2500.0801 | 21.4712 | 46.574 | 11.643 | 16069.4648 |
| 4500 | 0.7273 | 597.0923 | 4013.0125 | 2459.4241 | 21.7093 | 46.063 | 11.516 | 12965.0762 |
| 5000 | 0.8081 | 567.6912 | 3822.9963 | 2424.4800 | 21.5309 | 46.445 | 11.611 | 10275.5850 |
| 5500 | 0.8889 | 548.5159 | 3864.8674 | 2399.5359 | 21.6408 | 46.209 | 11.552 | 8114.6914 |
| 6000 | 0.9697 | 539.3817 | 3793.8606 | 2379.3601 | 21.5636 | 46.374 | 11.594 | 6467.9736 |
| 6187 | 0.9999 | 524.7870 | 3705.5625 | 2370.7361 | 21.6322 | 46.227 | 11.557 | 6035.2861 |
### Framework versions
- Distily 0.2.0
- Transformers 4.44.0
- Pytorch 2.3.0
- Datasets 2.20.0
|