--- base_model: unsloth/Meta-Llama-3.1-8B tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en - ur --- # Model Card for Alif 1.0 8B Instruct **Alif 1.0 8B Instruct** is an open-source model with highly advanced multilingual reasoning capabilities. It utilizes human refined multilingual synthetic data paired with reasoning to enhance cultural nuance and reasoning capabilities in english and urdu languages. - **Developed by:** large-traversaal - **License:** apache-2.0 - **Base model:** unsloth/Meta-Llama-3.1-8B - **Model:** Alif-1.0-8B-Instruct - **Model Size:** 8 billion parameters This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. ### How to Use Alif 1.0 8B Instruct Install the transformers, bitsandbytes libraries and load Alif 1.0 8B Instruct as follows: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch from transformers import BitsAndBytesConfig model_id = "large-traversaal/Alif-1.0-8B-Instruct" # 4-bit quantization configuration quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) # Load tokenizer and model in 4-bit tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=quantization_config, device_map="auto" ) # Create text generation pipeline chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto") # Function to chat def chat(message): response = chatbot(message, max_new_tokens=100, do_sample=True, temperature=0.3) return response[0]["generated_text"] # Example chat user_input = "شہر کراچی کی کیا اہمیت ہے؟" bot_response = chat(user_input) print(bot_response) ``` You can also try out this model using [TextStreamer](https://colab.research.google.com/drive/1mEPynC__uN2tKDvDho3f6MpcKW-GMiAh?usp=sharing) or [Gradio](https://colab.research.google.com/drive/1DUwlYBOMUd7FZaI631-y6y8fTNiy0pqt?usp=sharing) in Colab. It is also available in GGUF with various quantized formats for Ollama, LM Studio, Jan, and Llama.cpp. ## Model Details **Input**: Models input text only. **Output**: Models generate text only. **Model Architecture**: Alif 1.0 8B Instruct is an auto-regressive language model that uses an optimized transformer architecture. Post-training includes continuous pretraining and supervised finetuning. For more details about how the model was trained, check out [our blogpost](https://blog.traversaal.ai/announcing-alif-1-0-our-first-urdu-llm-outperforming-other-open-source-llms/). ### Evaluation We evaluated Alif 1.0 8B Instruct against Gemma 2 9B, Llama 3.1 8B, Mistral Nemo 12B, Qwen 2.5 7B and Cohere Aya Expanse 8B using the human annotated Urdu evaluation dataset and scores are determined using gpt-4o as a judge. ### Model Card Contact For errors or additional questions about details in this model card, contact: contact@traversaal.ai