File size: 12,753 Bytes
991f07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# GraphaLogue Analyzer
# Marco Kuhlmann <marco.kuhlmann@liu.se>

import itertools
import statistics
import sys

from graph import Graph
from treewidth import quickbb


class DepthFirstSearch(object):

    def __init__(self, graph, undirected=False):
        self._graph = graph
        self._undirected = undirected

        self._enter = dict()
        self._leave = dict()
        self.n_runs = 0

        def compute_timestamps(node, timestamp):
            self._enter[node] = next(timestamp)
            for edge in self._graph.find_node(node).outgoing_edges:
                if not edge.tgt in self._enter:
                    compute_timestamps(edge.tgt, timestamp)
            if self._undirected:
                for edge in self._graph.find_node(node).incoming_edges:
                    if not edge.src in self._enter:
                        compute_timestamps(edge.src, timestamp)
            self._leave[node] = next(timestamp)
        timestamp = itertools.count()
        for node in self._graph.nodes:
            if not node.id in self._enter:
                compute_timestamps(node.id, timestamp)
                self.n_runs += 1

    def is_back_edge(self, edge):
        return \
            self._enter[edge.tgt] < self._enter[edge.src] and \
            self._leave[edge.src] < self._leave[edge.tgt]


class InspectedGraph(object):

    def __init__(self, graph):
        self.graph = graph
        self.n_nodes = len(graph.nodes)
        self.dfs = DepthFirstSearch(graph)
        self.undirected_dfs = DepthFirstSearch(graph, undirected=True)

    def n_root_nodes(self):
        return sum(1 for node in self.graph.nodes if node.is_root())

    def n_leaf_nodes(self):
        return sum(1 for node in self.graph.nodes if node.is_leaf())

    def n_top_nodes(self):
        return sum(1 for node in self.graph.nodes if node.is_top())

    def n_singleton_nodes(self):
        return sum(1 for node in self.graph.nodes if node.is_singleton())

    def n_loops(self):
        return sum(1 for edge in self.graph.edges if edge.is_loop())

    def n_components(self):
        return self.undirected_dfs.n_runs - self.n_singleton_nodes()

    def is_cyclic(self):
        for edge in self.graph.edges:
            if edge.is_loop() or self.dfs.is_back_edge(edge):
                return True
        return False

    def is_forest(self):
        if self.is_cyclic():
            return False
        else:
            for node in self.graph.nodes:
                if len(node.incoming_edges) > 1:
                    return False
            return True

    def is_tree(self):
        return self.is_forest() and self.n_components() == 1

    def treewidth(self):
        n_nodes = len(self.graph.nodes) - self.n_singleton_nodes()
        if n_nodes <= 1:
            return 1
        else:
            undirected_graph = {}
            for node in self.graph.nodes:
                if not node.is_singleton():
                    undirected_graph[node.id] = set()
            for edge in self.graph.edges:
                if not edge.is_loop():
                    undirected_graph[edge.src].add(edge.tgt)
                    undirected_graph[edge.tgt].add(edge.src)
            decomposition = quickbb(undirected_graph)
            return max(1, max(len(u)-1 for u in decomposition))

    def _crossing_pairs(self):
        def endpoints(edge):
            return (min(edge.src, edge.tgt), max(edge.src, edge.tgt))
        for edge1 in self.graph.edges:
            min1, max1 = endpoints(edge1)
            for edge2 in self.graph.edges:
                min2, max2 = endpoints(edge2)
                if min1 < min2 and min2 < max1 and max1 < max2:
                    yield (min1, max1), (min2, max2)

    def _crossing_edges(self):
        crossing_edges = set()
        for edge1, edge2 in self._crossing_pairs():
            crossing_edges.add(edge1)
            crossing_edges.add(edge2)
        return crossing_edges

    def is_noncrossing(self):
        for _, _ in self._crossing_pairs():
            return False
        return True

    def is_page2(self):
        crossing_graph = {u: set() for u in self._crossing_edges()}
        for edge1, edge2 in self._crossing_pairs():
            crossing_graph[edge1].add(edge2)
            crossing_graph[edge2].add(edge1)

        # Tests whether the specified undirected graph is 2-colorable.
        colors = {}

        def inner(node, color1, color2):
            colors[node] = color1
            for neighbour in crossing_graph[node]:
                if neighbour in colors:
                    if colors[neighbour] == color1:
                        return False
                else:
                    inner(neighbour, color2, color1)
            return True

        for node in crossing_graph:
            if node not in colors:
                if not inner(node, 0, 1):
                    return False
        return True

    def density(self):
        n_nodes = len(self.graph.nodes) - self.n_singleton_nodes()
        if n_nodes <= 1:
            return 1
        else:
            n_edges = 0
            for edge in self.graph.edges:
                if edge.src != edge.tgt:
                    n_edges += 1
            return n_edges / (n_nodes - 1)


PROPERTY_COUNTER = itertools.count(1)


def report(msg, val):
    print("(%02d)\t%s\t%s" % (next(PROPERTY_COUNTER), msg, val))


def analyze(graphs, ids=None):
    ordered = False
    n_graphs = 0
    n_graphs_noncrossing = 0
    n_graphs_has_top_node = 0
    n_graphs_multirooted = 0
    n_nodes = 0
    n_nodes_with_reentrancies = 0
    n_singletons = 0
    n_top_nodes = 0
    n_edges = 0
    n_labels = 0;
    n_properties = 0;
    n_anchors = 0;
    n_attributes = 0;
    n_loops = 0
    labels = set()
    non_functional_labels = set()
    n_cyclic = 0
    n_connected = 0
    n_forests = 0
    n_trees = 0
    n_graphs_page2 = 0
    acc_treewidth = 0
    n_roots_nontop = 0
    acc_density = 0.0
    max_treewidth = 0
    acc_edge_length = 0
    n_treewidth_one = 0
    treewidths = []
    for graph in graphs:
        if ids and not graph.id in ids:
            continue

        n_graphs += 1
        n_nodes += len(graph.nodes)
        n_edges += len(graph.edges)

        for node in graph.nodes:
            if node.label is not None: n_labels += 1;
            if node.properties is not None and node.values is not None:
                n_properties += len(node.properties);
            if node.anchors is not None: n_anchors += 1;
        for edge in graph.edges:
            if edge.attributes is not None and edge.values is not None:
                n_attributes += len(edge.attributes);

        inspected_graph = InspectedGraph(graph)

        treewidth = inspected_graph.treewidth()

        n_trees += inspected_graph.is_tree()
        acc_density += inspected_graph.density()

        has_reentrancies = False
        has_top_node = False

        n_loops += inspected_graph.n_loops()

        for edge in graph.edges:
            if edge.lab is not None: labels.add(edge.lab)
        for node in graph.nodes:
            n_top_nodes += node.is_top
            if node.is_top:
                has_top_node = True
            n_singletons += node.is_singleton()
            if len(node.incoming_edges) > 1:
                n_nodes_with_reentrancies += 1
                has_reentrancies = True
            outgoing_labels = set()
            for edge in node.outgoing_edges:
                if edge.lab in outgoing_labels:
                    non_functional_labels.add(edge.lab)
                else:
                    outgoing_labels.add(edge.lab)
            if not node.is_singleton() and node.is_root() and not node.is_top:
                n_roots_nontop += 1

        n_cyclic += inspected_graph.is_cyclic()
        n_connected += inspected_graph.n_components() == 1
        n_forests += inspected_graph.is_forest()
        acc_treewidth += treewidth
        max_treewidth = max(max_treewidth, treewidth)
        n_treewidth_one += treewidth == 1
        treewidths.append(treewidth)

        if graph.flavor == 0:
            ordered = True
            n_graphs_noncrossing += inspected_graph.is_noncrossing()
            n_graphs_page2 += inspected_graph.is_page2()
            acc_edge_length += sum(edge.length() for edge in graph.edges)
        else:
            if ordered:
                print(
                    "analyzer.py: cannot mix graphs of different flavors in one file; exit.", file=sys.stderr)
                sys.exit(1)

        n_graphs_has_top_node += has_top_node
        n_graphs_multirooted += inspected_graph.n_root_nodes() > 1

    n_nonsingletons = n_nodes - n_singletons

    report("number of graphs", "%d" % n_graphs)
    report("number of nodes", "%d" % n_nodes)
    n_tuples = n_top_nodes + n_labels + n_properties + n_anchors + n_edges + n_attributes;
    if n_tuples > 0:
      report("number of tops (percentage)",
             "{:d} ({:.2f})".format(n_top_nodes, 100 * n_top_nodes / n_tuples));
      report("number of node labels (percentage)",
             "{:d} ({:.2f})".format(n_labels, 100 * n_labels / n_tuples));
      report("number of node properties (percentage)",
             "{:d} ({:.2f})".format(n_properties, 100 * n_properties / n_tuples));
      report("number of node anchors (percentage)",
             "{:d} ({:.2f})".format(n_anchors, 100 * n_anchors / n_tuples));
      report("number of edges (percentage)",
             "{:d} ({:.2f})".format(n_edges, 100 * n_edges / n_tuples));
      report("number of edge attributes (percentage)",
             "{:d} ({:.2f})".format(n_attributes, 100 * n_attributes / n_tuples));
    report("number of edge labels", "%d" % len(labels))
#    report("\\percentnode\\ singleton", "%.2f" % (100 * n_singletons / n_nodes))
#    report("\\percentnode\\ non-singleton", "%.2f" % (100 * n_nonsingletons / n_nodes))
    report("\\percentgraph\\ trees", "%.2f" % (100 * n_trees / n_graphs))
    report("\\percentgraph\\ treewidth one", "%.2f" %
           (100 * n_treewidth_one / n_graphs))
    report("average treewidth", "%.3f" % (acc_treewidth / n_graphs))
#    report("median treewidth", "%d" % statistics.median(treewidths))
    report("maximal treewidth", "%d" % max_treewidth)
#    report("edge density", "%.3f" % (n_edges / n_nonsingletons))
    report("average edge density", "%.3f" % (acc_density / n_graphs))
    report("\\percentnode\\ reentrant", "%.2f" %
           (100 * n_nodes_with_reentrancies / n_nonsingletons))
#    report("labels", " ".join(sorted(labels)))
#    report("functional labels", " ".join(sorted(labels - non_functional_labels)))
#    report("non-functional labels", " ".join(sorted(non_functional_labels)))
#    report("\\percentgraph\\ forests", "%.2f" % (100 * n_forests / n_graphs))
#    report("number of top nodes", "%d" % n_top_nodes)
    report("\\percentgraph\\ cyclic", "%.2f" % (100 * n_cyclic / n_graphs))
#    report("number of self-loops", "%d" % n_loops)
    report("\\percentgraph\\ not connected", "%.2f" %
           (100 * (n_graphs - n_connected) / n_graphs))
#    report("\\percentgraph\\ without top", "%.2f" % (100 * (n_graphs - n_graphs_has_top_node) / n_graphs))
#    report("average top nodes per graph", "%.3f" % (n_top_nodes / n_graphs))
    report("\\percentgraph\\ multi-rooted", "%.2f" %
           (100 * n_graphs_multirooted / n_graphs))
    report("percentage of non-top roots", "%.2f" %
           (100 * n_roots_nontop / n_nonsingletons))
    if ordered:
        report("average edge length", "%.3f" % (acc_edge_length / n_edges))
        report("\\percentgraph\\ noncrossing", "%.2f" %
               (100 * n_graphs_noncrossing / n_graphs))
        report("\\percentgraph\\ pagenumber two", "%.2f" %
               (100 * n_graphs_page2 / n_graphs))
    else:
        report("average edge length", "--")
        report("\\percentgraph\\ noncrossing", "--")
        report("\\percentgraph\\ pagenumber two", "--")


def read_ids(file_name):
    ids = set()
    with open(file_name) as fp:
        for line in fp:
            ids.add(line.rstrip())
    return ids


def read_tokens(file_name):
    with open(file_name) as fp:
        for line in fp:
            yield line.split()


def analyze_cmd(read_function, ordered=False):
    import sys
    ids = None
    tokens = None
    for arg in sys.argv[2:]:
        x, y = tuple(arg.split(':'))
        if x == 'ids':
            print("Reading whitelisted IDs from %s" % y, file=sys.stderr)
            ids = read_ids(y)
        if x == 'tokens':
            print("Reading tokens from %s" % y, file=sys.stderr)
            tokens = read_tokens(y)
    with open(sys.argv[1]) as fp:
        analyze(read_function(fp), ordered=ordered, ids=ids, tokens=tokens)