File size: 2,652 Bytes
4d610a7 8e48c6c 0801633 c25e490 8e48c6c 4d610a7 0f5db1b 8e48c6c 857c372 8e48c6c 0801633 8e48c6c 0f5db1b 8e48c6c c25e490 8e48c6c 0f5db1b 0801633 4d610a7 8e48c6c c25e490 8e48c6c 4d610a7 c25e490 8e48c6c c25e490 4d610a7 8e48c6c 8b78f21 8e48c6c 8b78f21 8e48c6c 4d610a7 8e48c6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
library_name: diffusers
base_model: segmind/SSD-1B
tags:
- lora
- text-to-image
license: openrail++
inference: false
---
# Latent Consistency Model (LCM) LoRA: SSD-1B
Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556)
by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*
It is a distilled consistency adapter for [`segmind/SSD-1B`](https://huggingface.co/segmind/SSD-1B) that allows
to reduce the number of inference steps to only between **2 - 8 steps**.
| Model | Params / M |
|----------------------------------------------------------------------------|------------|
| [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | 67.5 |
| [**lcm-lora-ssd-1b**](https://huggingface.co/latent-consistency/lcm-lora-ssd-1b) | **105** |
| [lcm-lora-sdxl](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | 197M |
## Usage
LCM-LoRA is supported in 🤗 Hugging Face Diffusers library from version v0.23.0 onwards. To run the model, first
install the latest version of the Diffusers library as well as `peft`, `accelerate` and `transformers`.
audio dataset from the Hugging Face Hub:
```bash
pip install --upgrade pip
pip install --upgrade diffusers transformers accelerate peft
```
### Text-to-Image
Let's load the base model `segmind/SSD-1B` first. Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps.
Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.
```python
import torch
from diffusers import LCMScheduler, AutoPipelineForText2Image
model_id = "segmind/SSD-1B"
adapter_id = "latent-consistency/lcm-lora-ssd-1b"
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
# load and fuse lcm lora
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
# disable guidance_scale by passing 0
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
```
![](./image.png)
### Image-to-Image
Works as well! TODO docs
### Inpainting
Works as well! TODO docs
### ControlNet
Works as well! TODO docs
### T2I Adapter
Works as well! TODO docs
## Speed Benchmark
TODO
## Training
TODO |