laura63 commited on
Commit
899ea14
1 Parent(s): 9b0d818

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - audiofolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: wav2vec2-base-finetuned-ks
11
+ results:
12
+ - task:
13
+ name: Audio Classification
14
+ type: audio-classification
15
+ dataset:
16
+ name: audiofolder
17
+ type: audiofolder
18
+ config: Data_Train
19
+ split: train
20
+ args: Data_Train
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8037790697674418
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # wav2vec2-base-finetuned-ks
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.1169
35
+ - Accuracy: 0.8038
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 3e-05
55
+ - train_batch_size: 1
56
+ - eval_batch_size: 1
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 4
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 2.611 | 1.0 | 688 | 2.5527 | 0.2151 |
70
+ | 1.6933 | 2.0 | 1376 | 2.0827 | 0.3488 |
71
+ | 1.5991 | 3.0 | 2064 | 1.5501 | 0.5872 |
72
+ | 1.2121 | 4.0 | 2752 | 1.2630 | 0.6526 |
73
+ | 1.1709 | 5.0 | 3440 | 1.0988 | 0.7020 |
74
+ | 0.7891 | 6.0 | 4128 | 1.0156 | 0.7791 |
75
+ | 0.5181 | 7.0 | 4816 | 1.0928 | 0.7733 |
76
+ | 0.428 | 8.0 | 5504 | 1.1429 | 0.7922 |
77
+ | 0.4147 | 9.0 | 6192 | 1.1507 | 0.7892 |
78
+ | 0.0151 | 10.0 | 6880 | 1.1169 | 0.8038 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.31.0.dev0
84
+ - Pytorch 2.0.1+cu118
85
+ - Datasets 2.13.1
86
+ - Tokenizers 0.13.3