--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 model-index: - name: wav2vec2-base-finetuned-ks results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: Data_Train split: train args: Data_Train metrics: - name: Accuracy type: accuracy value: 0.8127696289905091 - name: F1 type: f1 value: 0.7948883642136002 --- # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9323 - Accuracy: 0.8128 - F1: 0.7949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.844 | 1.0 | 1449 | 1.7968 | 0.5065 | 0.3818 | | 0.8796 | 2.0 | 2898 | 1.1875 | 0.6799 | 0.6273 | | 0.7076 | 3.0 | 4347 | 1.0995 | 0.7584 | 0.7287 | | 0.4669 | 4.0 | 5796 | 0.9960 | 0.7886 | 0.7675 | | 0.2156 | 5.0 | 7245 | 0.9323 | 0.8128 | 0.7949 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3