Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,33 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
3 |
+
language: ko
|
4 |
+
widget:
|
5 |
+
- text: 피고인은 2022. 11. 14. 혈중알콜농도 0.123%의 술에 취한 상태로 승용차를 운전하였다.
|
6 |
---
|
7 |
+
# Model information
|
8 |
+
KLAID(Korean Legal Artificial Intelligence Datasets) LJP classification model based on pretrained KLUE RoBERTa-base. See more information about KLUE: [Github](https://github.com/KLUE-benchmark/KLUE) and [Paper](https://arxiv.org/abs/2105.09680) for more details.
|
9 |
+
## How to use
|
10 |
+
_NOTE:_ Use `BertTokenizer` instead of RobertaTokenizer and RobertaForSequenceClassification. (`AutoTokenizer` will load `BertTokenizer`)
|
11 |
+
```python
|
12 |
+
import numpy as np
|
13 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("lawcompany/KLAID_LJP_base")
|
15 |
+
model = AutoModelForSequenceClassification.from_pretrained("lawcompany/KLAID_LJP_base")
|
16 |
+
model.eval()
|
17 |
+
input_data = tokenizer("피고인은 2022. 11. 14. 혈중알콜농도 0.123%의 술에 취한 상태로 승용차를 운전하였다.",
|
18 |
+
max_length=512,
|
19 |
+
return_tensors="pt")
|
20 |
+
logits = model(**input_data).logits.detach().numpy()
|
21 |
+
pred = np.argmax(logits)
|
22 |
+
# output
|
23 |
+
# 7
|
24 |
+
```
|
25 |
+
|
26 |
+
## Licensing information
|
27 |
+
Copyright 2022-present [Law&Company Co. Ltd.](https://career.lawcompany.co.kr/)
|
28 |
+
|
29 |
+
Licensed under the CC-BY-NC-ND-4.0
|
30 |
+
|
31 |
+
## Other Inquiries
|
32 |
+
- **Email:** [klaid@lawcompany.co.kr](klaid@lawcompany.co.kr)
|
33 |
+
- **Homepage:** [https://klaid.net/](https://klaid.net/)
|