File size: 15,968 Bytes
25da440 4067774 25da440 4067774 25da440 4067774 25da440 4067774 25da440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text_shortening_model_v13
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# text_shortening_model_v13
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0548
- Rouge1: 0.5772
- Rouge2: 0.3353
- Rougel: 0.5189
- Rougelsum: 0.5189
- Bert precision: 0.8941
- Bert recall: 0.8987
- Average word count: 11.2143
- Max word count: 15
- Min word count: 6
- Average token count: 16.5071
- % shortened texts with length > 12: 30.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
| 1.1544 | 1.0 | 62 | 1.6383 | 0.5496 | 0.3173 | 0.5011 | 0.5016 | 0.8821 | 0.8901 | 11.7214 | 17 | 4 | 17.0214 | 50.0 |
| 1.0203 | 2.0 | 124 | 1.5337 | 0.569 | 0.3214 | 0.5114 | 0.5112 | 0.8863 | 0.8968 | 11.9857 | 17 | 5 | 17.2214 | 50.7143 |
| 0.9474 | 3.0 | 186 | 1.5169 | 0.5754 | 0.3283 | 0.5196 | 0.5186 | 0.8874 | 0.8985 | 12.0857 | 17 | 6 | 17.2571 | 53.5714 |
| 0.8615 | 4.0 | 248 | 1.5058 | 0.5785 | 0.3368 | 0.5211 | 0.5198 | 0.8917 | 0.9006 | 11.7 | 17 | 6 | 16.8714 | 47.8571 |
| 0.8182 | 5.0 | 310 | 1.4855 | 0.5817 | 0.3284 | 0.5203 | 0.5195 | 0.8907 | 0.9 | 11.7357 | 17 | 6 | 16.9357 | 46.4286 |
| 0.784 | 6.0 | 372 | 1.4813 | 0.5862 | 0.3398 | 0.5242 | 0.5242 | 0.8918 | 0.9016 | 11.7 | 16 | 6 | 17.0 | 45.0 |
| 0.7749 | 7.0 | 434 | 1.4723 | 0.581 | 0.334 | 0.5241 | 0.5233 | 0.8951 | 0.8984 | 11.1929 | 16 | 6 | 16.3286 | 32.1429 |
| 0.7396 | 8.0 | 496 | 1.4936 | 0.5791 | 0.3402 | 0.5184 | 0.5183 | 0.8933 | 0.8992 | 11.4786 | 17 | 6 | 16.5571 | 34.2857 |
| 0.6856 | 9.0 | 558 | 1.5083 | 0.5757 | 0.3364 | 0.5174 | 0.5172 | 0.8944 | 0.8979 | 11.2 | 16 | 6 | 16.2357 | 30.7143 |
| 0.6679 | 10.0 | 620 | 1.5295 | 0.5814 | 0.3399 | 0.5271 | 0.5276 | 0.8915 | 0.9 | 11.7786 | 16 | 7 | 16.9143 | 40.0 |
| 0.6506 | 11.0 | 682 | 1.5363 | 0.5829 | 0.3491 | 0.5282 | 0.5283 | 0.8953 | 0.8994 | 11.3786 | 16 | 6 | 16.5286 | 33.5714 |
| 0.6521 | 12.0 | 744 | 1.5526 | 0.5645 | 0.3303 | 0.5095 | 0.5096 | 0.8914 | 0.8951 | 11.2286 | 16 | 5 | 16.4929 | 30.7143 |
| 0.6125 | 13.0 | 806 | 1.5787 | 0.5709 | 0.324 | 0.5097 | 0.5108 | 0.8906 | 0.8953 | 11.4214 | 16 | 6 | 16.6571 | 35.0 |
| 0.5915 | 14.0 | 868 | 1.5946 | 0.5757 | 0.3373 | 0.5152 | 0.5159 | 0.8926 | 0.8969 | 11.4071 | 16 | 6 | 16.5571 | 32.8571 |
| 0.5737 | 15.0 | 930 | 1.6204 | 0.577 | 0.3322 | 0.5219 | 0.5223 | 0.8918 | 0.8986 | 11.5929 | 16 | 6 | 16.8214 | 35.7143 |
| 0.5812 | 16.0 | 992 | 1.6372 | 0.5748 | 0.3243 | 0.52 | 0.5203 | 0.891 | 0.8977 | 11.6071 | 16 | 7 | 16.8214 | 37.8571 |
| 0.5468 | 17.0 | 1054 | 1.6514 | 0.5673 | 0.3304 | 0.5152 | 0.5152 | 0.895 | 0.8954 | 11.0 | 15 | 5 | 15.9929 | 26.4286 |
| 0.56 | 18.0 | 1116 | 1.6630 | 0.576 | 0.3273 | 0.5229 | 0.5228 | 0.8907 | 0.898 | 11.5786 | 16 | 6 | 16.8429 | 35.0 |
| 0.5548 | 19.0 | 1178 | 1.6868 | 0.5739 | 0.3262 | 0.5139 | 0.5135 | 0.8923 | 0.8972 | 11.3429 | 16 | 6 | 16.5929 | 33.5714 |
| 0.5338 | 20.0 | 1240 | 1.6954 | 0.5702 | 0.3295 | 0.518 | 0.5182 | 0.8914 | 0.8975 | 11.6 | 16 | 6 | 16.7429 | 37.8571 |
| 0.5323 | 21.0 | 1302 | 1.7255 | 0.585 | 0.3376 | 0.5262 | 0.5266 | 0.8938 | 0.9007 | 11.5643 | 16 | 6 | 16.7429 | 35.0 |
| 0.5075 | 22.0 | 1364 | 1.7320 | 0.5708 | 0.3272 | 0.5137 | 0.5144 | 0.8929 | 0.8953 | 11.3286 | 16 | 6 | 16.4143 | 32.1429 |
| 0.4916 | 23.0 | 1426 | 1.7601 | 0.5724 | 0.3276 | 0.5161 | 0.5171 | 0.8928 | 0.8965 | 11.3357 | 16 | 6 | 16.6 | 31.4286 |
| 0.4789 | 24.0 | 1488 | 1.7779 | 0.5726 | 0.3253 | 0.5128 | 0.513 | 0.8934 | 0.8964 | 11.4143 | 16 | 6 | 16.5 | 35.0 |
| 0.4851 | 25.0 | 1550 | 1.7970 | 0.575 | 0.3318 | 0.5204 | 0.521 | 0.8935 | 0.8982 | 11.4429 | 16 | 6 | 16.6714 | 31.4286 |
| 0.4682 | 26.0 | 1612 | 1.8094 | 0.5783 | 0.3376 | 0.5203 | 0.5213 | 0.8937 | 0.8984 | 11.4714 | 16 | 6 | 16.7571 | 30.0 |
| 0.4703 | 27.0 | 1674 | 1.8299 | 0.5814 | 0.3383 | 0.5208 | 0.5215 | 0.8934 | 0.8982 | 11.3929 | 16 | 6 | 16.6643 | 30.0 |
| 0.483 | 28.0 | 1736 | 1.8396 | 0.576 | 0.3394 | 0.5155 | 0.5162 | 0.8945 | 0.8975 | 11.3357 | 16 | 6 | 16.3857 | 28.5714 |
| 0.4712 | 29.0 | 1798 | 1.8567 | 0.5741 | 0.326 | 0.5125 | 0.5129 | 0.893 | 0.8981 | 11.5 | 16 | 6 | 16.5786 | 35.7143 |
| 0.4679 | 30.0 | 1860 | 1.8818 | 0.5855 | 0.3416 | 0.5239 | 0.5242 | 0.895 | 0.9005 | 11.4429 | 16 | 6 | 16.7143 | 33.5714 |
| 0.4653 | 31.0 | 1922 | 1.8758 | 0.5805 | 0.3378 | 0.5217 | 0.5222 | 0.894 | 0.8986 | 11.3357 | 16 | 6 | 16.4857 | 30.0 |
| 0.4484 | 32.0 | 1984 | 1.8920 | 0.5812 | 0.3363 | 0.5207 | 0.5206 | 0.8946 | 0.8991 | 11.3357 | 16 | 6 | 16.5143 | 30.0 |
| 0.4428 | 33.0 | 2046 | 1.8925 | 0.5832 | 0.3372 | 0.5195 | 0.5203 | 0.8968 | 0.8987 | 11.1286 | 16 | 6 | 16.2214 | 26.4286 |
| 0.4266 | 34.0 | 2108 | 1.9185 | 0.5736 | 0.3322 | 0.517 | 0.518 | 0.8952 | 0.8974 | 11.0214 | 15 | 6 | 16.1714 | 25.0 |
| 0.429 | 35.0 | 2170 | 1.9366 | 0.5829 | 0.3371 | 0.5224 | 0.5231 | 0.8965 | 0.8988 | 11.1643 | 16 | 6 | 16.25 | 27.1429 |
| 0.4034 | 36.0 | 2232 | 1.9510 | 0.5823 | 0.3392 | 0.5288 | 0.5288 | 0.8963 | 0.8986 | 11.1143 | 15 | 6 | 16.1214 | 30.0 |
| 0.4111 | 37.0 | 2294 | 1.9517 | 0.587 | 0.3426 | 0.529 | 0.5296 | 0.8959 | 0.9011 | 11.3857 | 16 | 6 | 16.55 | 31.4286 |
| 0.4318 | 38.0 | 2356 | 1.9450 | 0.5851 | 0.3444 | 0.5262 | 0.5268 | 0.8963 | 0.9009 | 11.2714 | 16 | 6 | 16.4571 | 30.0 |
| 0.4399 | 39.0 | 2418 | 1.9539 | 0.5772 | 0.3339 | 0.5164 | 0.5169 | 0.8958 | 0.8995 | 11.0929 | 15 | 6 | 16.2929 | 25.0 |
| 0.4268 | 40.0 | 2480 | 1.9620 | 0.5806 | 0.3319 | 0.5187 | 0.5188 | 0.8962 | 0.8983 | 11.0214 | 16 | 6 | 16.0643 | 26.4286 |
| 0.4119 | 41.0 | 2542 | 1.9939 | 0.5819 | 0.3408 | 0.5239 | 0.5238 | 0.8945 | 0.8992 | 11.3 | 16 | 6 | 16.4929 | 30.0 |
| 0.4061 | 42.0 | 2604 | 1.9714 | 0.5813 | 0.338 | 0.5214 | 0.5228 | 0.897 | 0.8997 | 11.05 | 16 | 6 | 16.2429 | 25.7143 |
| 0.4176 | 43.0 | 2666 | 1.9911 | 0.5847 | 0.3388 | 0.5266 | 0.5265 | 0.8951 | 0.9003 | 11.1929 | 16 | 6 | 16.4643 | 28.5714 |
| 0.4041 | 44.0 | 2728 | 2.0105 | 0.5844 | 0.3468 | 0.5257 | 0.5256 | 0.8957 | 0.901 | 11.1786 | 15 | 6 | 16.5357 | 29.2857 |
| 0.3925 | 45.0 | 2790 | 2.0220 | 0.5787 | 0.3423 | 0.5179 | 0.5185 | 0.8936 | 0.8992 | 11.25 | 16 | 6 | 16.5143 | 32.1429 |
| 0.4095 | 46.0 | 2852 | 2.0179 | 0.581 | 0.3404 | 0.5197 | 0.5202 | 0.8957 | 0.8998 | 11.2143 | 16 | 6 | 16.4357 | 29.2857 |
| 0.397 | 47.0 | 2914 | 2.0124 | 0.5803 | 0.3385 | 0.5188 | 0.5193 | 0.8952 | 0.899 | 11.2357 | 16 | 6 | 16.2786 | 32.1429 |
| 0.3801 | 48.0 | 2976 | 2.0186 | 0.5778 | 0.3359 | 0.518 | 0.518 | 0.8944 | 0.8986 | 11.2143 | 16 | 6 | 16.4 | 32.1429 |
| 0.3966 | 49.0 | 3038 | 2.0234 | 0.5807 | 0.337 | 0.5185 | 0.5192 | 0.8953 | 0.9001 | 11.2571 | 16 | 6 | 16.4929 | 30.0 |
| 0.3838 | 50.0 | 3100 | 2.0317 | 0.5807 | 0.3427 | 0.523 | 0.5234 | 0.8954 | 0.8989 | 11.0571 | 16 | 6 | 16.2786 | 26.4286 |
| 0.3818 | 51.0 | 3162 | 2.0281 | 0.5811 | 0.3428 | 0.5238 | 0.5242 | 0.8956 | 0.9001 | 11.1643 | 16 | 6 | 16.3643 | 30.7143 |
| 0.3793 | 52.0 | 3224 | 2.0399 | 0.5824 | 0.3438 | 0.5214 | 0.522 | 0.8947 | 0.9003 | 11.2071 | 16 | 6 | 16.4714 | 30.7143 |
| 0.3734 | 53.0 | 3286 | 2.0470 | 0.5811 | 0.3413 | 0.5222 | 0.5227 | 0.8952 | 0.9 | 11.1643 | 15 | 6 | 16.4214 | 29.2857 |
| 0.3876 | 54.0 | 3348 | 2.0509 | 0.5764 | 0.3382 | 0.515 | 0.5156 | 0.8948 | 0.8983 | 11.1071 | 15 | 6 | 16.2643 | 28.5714 |
| 0.3736 | 55.0 | 3410 | 2.0498 | 0.5722 | 0.3331 | 0.5135 | 0.514 | 0.8937 | 0.8972 | 11.1357 | 16 | 6 | 16.3071 | 27.8571 |
| 0.3981 | 56.0 | 3472 | 2.0499 | 0.5726 | 0.3337 | 0.5133 | 0.5138 | 0.8939 | 0.8977 | 11.1286 | 15 | 6 | 16.3357 | 29.2857 |
| 0.3731 | 57.0 | 3534 | 2.0500 | 0.5767 | 0.3353 | 0.5173 | 0.5176 | 0.8946 | 0.8984 | 11.1286 | 15 | 6 | 16.3643 | 27.8571 |
| 0.3786 | 58.0 | 3596 | 2.0529 | 0.5779 | 0.3377 | 0.5199 | 0.5208 | 0.895 | 0.8994 | 11.1929 | 16 | 6 | 16.4357 | 28.5714 |
| 0.3648 | 59.0 | 3658 | 2.0545 | 0.5766 | 0.3348 | 0.518 | 0.5181 | 0.8939 | 0.8985 | 11.2143 | 15 | 6 | 16.5143 | 30.0 |
| 0.373 | 60.0 | 3720 | 2.0548 | 0.5772 | 0.3353 | 0.5189 | 0.5189 | 0.8941 | 0.8987 | 11.2143 | 15 | 6 | 16.5071 | 30.0 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cpu
- Datasets 2.14.5
- Tokenizers 0.13.3
|