End of training
Browse files- README.md +70 -0
- generation_config.json +6 -0
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: t5-small
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: text_shortening_model_v18
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# text_shortening_model_v18
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.7863
|
21 |
+
- Rouge1: 0.6984
|
22 |
+
- Rouge2: 0.3313
|
23 |
+
- Rougel: 0.4652
|
24 |
+
- Rougelsum: 0.6832
|
25 |
+
- Bert precision: 0.8799
|
26 |
+
- Bert recall: 0.8838
|
27 |
+
- Average word count: 1610.0
|
28 |
+
- Max word count: 1610
|
29 |
+
- Min word count: 1610
|
30 |
+
- Average token count: 16.8143
|
31 |
+
- % shortened texts with length > 12: 100.0
|
32 |
+
|
33 |
+
## Model description
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Intended uses & limitations
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training and evaluation data
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training procedure
|
46 |
+
|
47 |
+
### Training hyperparameters
|
48 |
+
|
49 |
+
The following hyperparameters were used during training:
|
50 |
+
- learning_rate: 0.0001
|
51 |
+
- train_batch_size: 8
|
52 |
+
- eval_batch_size: 8
|
53 |
+
- seed: 42
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- num_epochs: 1
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
|
62 |
+
| 1.195 | 1.0 | 62 | 1.7863 | 0.6984 | 0.3313 | 0.4652 | 0.6832 | 0.8799 | 0.8838 | 1610.0 | 1610 | 1610 | 16.8143 | 100.0 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.33.1
|
68 |
+
- Pytorch 2.0.1+cu118
|
69 |
+
- Datasets 2.14.5
|
70 |
+
- Tokenizers 0.13.3
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"decoder_start_token_id": 0,
|
3 |
+
"eos_token_id": 1,
|
4 |
+
"pad_token_id": 0,
|
5 |
+
"transformers_version": "4.33.1"
|
6 |
+
}
|