--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v18 results: [] --- # text_shortening_model_v18 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7863 - Rouge1: 0.6984 - Rouge2: 0.3313 - Rougel: 0.4652 - Rougelsum: 0.6832 - Bert precision: 0.8799 - Bert recall: 0.8838 - Average word count: 1610.0 - Max word count: 1610 - Min word count: 1610 - Average token count: 16.8143 - % shortened texts with length > 12: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| | 1.195 | 1.0 | 62 | 1.7863 | 0.6984 | 0.3313 | 0.4652 | 0.6832 | 0.8799 | 0.8838 | 1610.0 | 1610 | 1610 | 16.8143 | 100.0 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3