File size: 7,343 Bytes
866f598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
"__module__": "stable_baselines3.dqn.policies",
"__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function CnnPolicy.__init__ at 0x7a562f785c60>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7a562f798540>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 6500000,
"_total_timesteps": 6500000,
"_num_timesteps_at_start": 5500000,
"seed": null,
"action_noise": null,
"start_time": 1715714815567229137,
"learning_rate": 5e-05,
"tensorboard_log": "./",
"_last_obs": {
":type:": "<class 'numpy.ndarray'>"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>"
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>"
},
"_episode_num": 6118,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>"
},
"_n_updates": 1612500,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
"dtype": "uint8",
"bounded_below": "[[[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]]",
"bounded_above": "[[[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]]",
"_shape": [
3,
250,
160
],
"low": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]\n\n [[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]\n\n [[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]",
"high": "[[[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]\n\n [[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]\n\n [[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]]",
"low_repr": "0",
"high_repr": "255",
"_np_random": "Generator(PCG64)"
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
"n": "5",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": "Generator(PCG64)"
},
"n_envs": 1,
"buffer_size": 70000,
"batch_size": 64,
"learning_starts": 50000,
"tau": 1.0,
"gamma": 0.999,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7a562f95dc60>",
"add": "<function ReplayBuffer.add at 0x7a562f95dcf0>",
"sample": "<function ReplayBuffer.sample at 0x7a562f95dd80>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7a562f95de10>",
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7a562f95dea0>)>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7a562f962200>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>"
},
"use_sde_at_warmup": false,
"exploration_initial_eps": 1.0,
"exploration_final_eps": 0.05,
"exploration_fraction": 0.3,
"target_update_interval": 5000,
"_n_calls": 6500000,
"max_grad_norm": 10,
"exploration_rate": 0.05,
"lr_schedule": {
":type:": "<class 'function'>"
},
"batch_norm_stats": [],
"batch_norm_stats_target": [],
"exploration_schedule": {
":type:": "<class 'function'>"
}
} |