File size: 14,047 Bytes
ba5687a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d1c3a
 
 
 
 
 
 
 
 
 
ba5687a
a3d1c3a
ba5687a
a3d1c3a
 
 
ba5687a
 
a3d1c3a
 
ba5687a
a3d1c3a
 
 
 
 
ba5687a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d1c3a
 
 
ba5687a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d1c3a
ba5687a
 
 
 
 
 
 
 
 
a3d1c3a
 
 
ba5687a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%capture\n",
    "!pip install stable-baselines3[extra]\n",
    "!pip install moviepy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from stable_baselines3 import DQN\n",
    "from stable_baselines3.common.monitor import Monitor\n",
    "from stable_baselines3.common.callbacks import BaseCallback, EvalCallback, CallbackList\n",
    "from stable_baselines3.common.logger import Video, HParam, TensorBoardOutputFormat\n",
    "from stable_baselines3.common.evaluation import evaluate_policy\n",
    "\n",
    "from typing import Any, Dict\n",
    "\n",
    "import gymnasium as gym\n",
    "import torch as th\n",
    "import numpy as np\n",
    "\n",
    "# =====File names=====\n",
    "MODEL_FILE_NAME = \"ALE-Pacman-v5\"\n",
    "BUFFER_FILE_NAME = \"dqn_replay_buffer_pacman_v1\"\n",
    "POLICY_FILE_NAME = \"dqn_policy_pacman_v1\"\n",
    "\n",
    "# =====Model Config=====\n",
    "# Evaluate in tenths\n",
    "EVAL_CALLBACK_FREQ = 150_000\n",
    "# Record in quarters (the last one won't record, will have to do manually)\n",
    "VIDEO_CALLBACK_FREQ = 250_000\n",
    "FRAMESKIP = 4\n",
    "NUM_TIMESTEPS = 1_500_000\n",
    "\n",
    "# =====Hyperparams=====\n",
    "EXPLORATION_FRACTION = 0.3\n",
    "# Buffer size needs to be less than about 60k in order to save it in a Kaggle instance\n",
    "BUFFER_SIZE = 60_000\n",
    "BATCH_SIZE = 8\n",
    "LEARNING_STARTS = 50_000\n",
    "LEARNING_RATE = 0.0002\n",
    "GAMMA = 0.999\n",
    "FINAL_EPSILON = 0.1\n",
    "# Target Update Interval is set to 10k by default and looks like it is set to \n",
    "# 4 in the Nature paper. This is a large discrepency and makes me wonder if it \n",
    "# is something different or measured differently...\n",
    "TARGET_UPDATE_INTERVAL = 1_000"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# VideoRecorderCallback\n",
    "# The VideoRecorderCallback should record a video of the agent in the evaluation environment\n",
    "# every render_freq timesteps. It will record one episode. It will also record one episode when\n",
    "# the training has been completed\n",
    "\n",
    "class VideoRecorderCallback(BaseCallback):\n",
    "    def __init__(self, eval_env: gym.Env, render_freq: int, n_eval_episodes: int = 1, deterministic: bool = True):\n",
    "        \"\"\"\n",
    "        Records a video of an agent's trajectory traversing ``eval_env`` and logs it to TensorBoard.\n",
    "        :param eval_env: A gym environment from which the trajectory is recorded\n",
    "        :param render_freq: Render the agent's trajectory every eval_freq call of the callback.\n",
    "        :param n_eval_episodes: Number of episodes to render\n",
    "        :param deterministic: Whether to use deterministic or stochastic policy\n",
    "        \"\"\"\n",
    "        super().__init__()\n",
    "        self._eval_env = eval_env\n",
    "        self._render_freq = render_freq\n",
    "        self._n_eval_episodes = n_eval_episodes\n",
    "        self._deterministic = deterministic\n",
    "\n",
    "    def _on_step(self) -> bool:\n",
    "        if self.n_calls % self._render_freq == 0:\n",
    "            screens = []\n",
    "\n",
    "            def grab_screens(_locals: Dict[str, Any], _globals: Dict[str, Any]) -> None:\n",
    "                \"\"\"\n",
    "                Renders the environment in its current state, recording the screen in the captured `screens` list\n",
    "                :param _locals: A dictionary containing all local variables of the callback's scope\n",
    "                :param _globals: A dictionary containing all global variables of the callback's scope\n",
    "                \"\"\"\n",
    "                screen = self._eval_env.render()\n",
    "                # PyTorch uses CxHxW vs HxWxC gym (and tensorflow) image convention\n",
    "                screens.append(screen.transpose(2, 0, 1))\n",
    "\n",
    "            evaluate_policy(\n",
    "                self.model,\n",
    "                self._eval_env,\n",
    "                callback=grab_screens,\n",
    "                n_eval_episodes=self._n_eval_episodes,\n",
    "                deterministic=self._deterministic,\n",
    "            )\n",
    "            self.logger.record(\n",
    "                \"trajectory/video\",\n",
    "                Video(th.from_numpy(np.array([screens])), fps=60),\n",
    "                exclude=(\"stdout\", \"log\", \"json\", \"csv\"),\n",
    "            )\n",
    "        return True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HParamCallback\n",
    "# This should log the hyperparameters specified and map the metrics that are logged to \n",
    "# the appropriate run.\n",
    "class HParamCallback(BaseCallback):\n",
    "    \"\"\"\n",
    "    Saves the hyperparameters and metrics at the start of the training, and logs them to TensorBoard.\n",
    "    \"\"\"    \n",
    "    def __init__(self):\n",
    "        super().__init__()\n",
    "        \n",
    "\n",
    "    def _on_training_start(self) -> None:\n",
    "                    \n",
    "        hparam_dict = {\n",
    "            \"algorithm\": self.model.__class__.__name__,\n",
    "            \"policy\": self.model.policy.__class__.__name__,\n",
    "            \"environment\": self.model.env.__class__.__name__,\n",
    "            \"buffer_size\": self.model.buffer_size,\n",
    "            \"batch_size\": self.model.batch_size,\n",
    "            \"tau\": self.model.tau,\n",
    "            \"gradient_steps\": self.model.gradient_steps,\n",
    "            \"target_update_interval\": self.model.target_update_interval,\n",
    "            \"exploration_fraction\": self.model.exploration_fraction,\n",
    "            \"exploration_initial_eps\": self.model.exploration_initial_eps,\n",
    "            \"exploration_final_eps\": self.model.exploration_final_eps,\n",
    "            \"max_grad_norm\": self.model.max_grad_norm,\n",
    "            \"tensorboard_log\": self.model.tensorboard_log,\n",
    "            \"seed\": self.model.seed,            \n",
    "            \"learning rate\": self.model.learning_rate,\n",
    "            \"gamma\": self.model.gamma,            \n",
    "        }\n",
    "        # define the metrics that will appear in the `HPARAMS` Tensorboard tab by referencing their tag\n",
    "        # Tensorbaord will find & display metrics from the `SCALARS` tab\n",
    "        metric_dict = {\n",
    "            \"eval/mean_ep_length\": 0,\n",
    "            \"eval/mean_reward\": 0,\n",
    "            \"rollout/ep_len_mean\": 0,\n",
    "            \"rollout/ep_rew_mean\": 0,\n",
    "            \"rollout/exploration_rate\": 0,\n",
    "            \"time/_episode_num\": 0,\n",
    "            \"time/fps\": 0,\n",
    "            \"time/total_timesteps\": 0,\n",
    "            \"train/learning_rate\": 0.0,\n",
    "            \"train/loss\": 0.0,\n",
    "            \"train/n_updates\": 0.0,\n",
    "            \"locals/rewards\": 0.0,\n",
    "            \"locals/infos_0_lives\": 0.0,\n",
    "            \"locals/num_collected_steps\": 0.0,\n",
    "            \"locals/num_collected_episodes\": 0.0\n",
    "            }\n",
    "                \n",
    "        self.logger.record(\n",
    "            \"hparams\",\n",
    "            HParam(hparam_dict, metric_dict),\n",
    "            exclude=(\"stdout\", \"log\", \"json\", \"csv\"),\n",
    "        )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# PlotTensorboardValuesCallback\n",
    "# This callback should log values to tensorboard on every step. \n",
    "# The self.logger class should plot a new scalar value when recording.\n",
    "\n",
    "class PlotTensorboardValuesCallback(BaseCallback):\n",
    "    \"\"\"\n",
    "    Custom callback for plotting additional values in tensorboard.\n",
    "    \"\"\"\n",
    "    def __init__(self, eval_env: gym.Env, train_env: gym.Env, model: DQN, verbose=0):\n",
    "        super().__init__(verbose)\n",
    "        self._eval_env = eval_env\n",
    "        self._train_env = train_env\n",
    "        self._model = model\n",
    "\n",
    "    def _on_training_start(self) -> None:\n",
    "        output_formats = self.logger.output_formats\n",
    "        # Save reference to tensorboard formatter object\n",
    "        # note: the failure case (not formatter found) is not handled here, should be done with try/except.\n",
    "        try:\n",
    "            self.tb_formatter = next(formatter for formatter in output_formats if isinstance(formatter, TensorBoardOutputFormat))\n",
    "        except:\n",
    "            print(\"Exception thrown in tb_formatter initialization.\") \n",
    "            \n",
    "        self.tb_formatter.writer.add_text(\"metadata/eval_env\", str(self._eval_env.metadata), self.num_timesteps)\n",
    "        self.tb_formatter.writer.flush()\n",
    "        self.tb_formatter.writer.add_text(\"metadata/train_env\", str(self._train_env.metadata), self.num_timesteps)\n",
    "        self.tb_formatter.writer.flush()\n",
    "        self.tb_formatter.writer.add_text(\"model/q_net\", str(self._model.q_net), self.num_timesteps)\n",
    "        self.tb_formatter.writer.flush()\n",
    "        self.tb_formatter.writer.add_text(\"model/q_net_target\", str(self._model.q_net_target), self.num_timesteps)\n",
    "        self.tb_formatter.writer.flush()\n",
    "\n",
    "    def _on_step(self) -> bool:\n",
    "        self.logger.record(\"time/_episode_num\", self.model._episode_num, exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
    "        self.logger.record(\"train/n_updates\", self.model._n_updates, exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
    "        self.logger.record(\"locals/rewards\", self.locals[\"rewards\"], exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
    "        self.logger.record(\"locals/infos_0_lives\", self.locals[\"infos\"][0][\"lives\"], exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
    "        self.logger.record(\"locals/num_collected_steps\", self.locals[\"num_collected_steps\"], exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
    "        self.logger.record(\"locals/num_collected_episodes\", self.locals[\"num_collected_episodes\"], exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
    "                    \n",
    "        return True\n",
    "    \n",
    "    def _on_training_end(self) -> None:\n",
    "        self.tb_formatter.writer.add_text(\"metadata/eval_env\", str(self._eval_env.metadata), self.num_timesteps)\n",
    "        self.tb_formatter.writer.flush()\n",
    "        self.tb_formatter.writer.add_text(\"metadata/train_env\", str(self._train_env.metadata), self.num_timesteps)\n",
    "        self.tb_formatter.writer.flush()\n",
    "        self.tb_formatter.writer.add_text(\"model/q_net\", str(self._model.q_net), self.num_timesteps)\n",
    "        self.tb_formatter.writer.flush()\n",
    "        self.tb_formatter.writer.add_text(\"model/q_net_target\", str(self._model.q_net_target), self.num_timesteps)\n",
    "        self.tb_formatter.writer.flush()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# make the training and evaluation environments\n",
    "eval_env = Monitor(gym.make(\"ALE/Pacman-v5\", render_mode=\"rgb_array\", frameskip=FRAMESKIP))\n",
    "train_env = gym.make(\"ALE/Pacman-v5\", render_mode=\"rgb_array\", frameskip=FRAMESKIP)\n",
    "\n",
    "# Make the model with specified hyperparams\n",
    "model = DQN(\n",
    "    \"CnnPolicy\",\n",
    "    train_env,\n",
    "    verbose=1,\n",
    "    buffer_size=BUFFER_SIZE,\n",
    "    exploration_fraction = EXPLORATION_FRACTION,\n",
    "    batch_size=BATCH_SIZE,\n",
    "    exploration_final_eps=FINAL_EPSILON,\n",
    "    gamma=GAMMA,\n",
    "    learning_starts=LEARNING_STARTS,\n",
    "    learning_rate=LEARNING_RATE,\n",
    "    target_update_interval=TARGET_UPDATE_INTERVAL,\n",
    "    tensorboard_log=\"./\",\n",
    "    )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the callbacks and put them in a list\n",
    "eval_callback = EvalCallback(\n",
    "    eval_env,\n",
    "    best_model_save_path=\"./best_model/\",\n",
    "    log_path=\"./evals/\",\n",
    "    eval_freq=EVAL_CALLBACK_FREQ,\n",
    "    n_eval_episodes=10,\n",
    "    deterministic=True,\n",
    "    render=False)\n",
    "\n",
    "tbplot_callback = PlotTensorboardValuesCallback(eval_env=eval_env, train_env=train_env, model=model)\n",
    "video_callback = VideoRecorderCallback(eval_env, render_freq=VIDEO_CALLBACK_FREQ)\n",
    "hparam_callback = HParamCallback()\n",
    "\n",
    "callback_list = CallbackList([hparam_callback, eval_callback, video_callback, tbplot_callback])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Train the model\n",
    "model.learn(total_timesteps=NUM_TIMESTEPS, callback=callback_list, tb_log_name=\"./tb/\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Save the model, policy, and replay buffer for future loading and training\n",
    "model.save(MODEL_FILE_NAME)\n",
    "model.save_replay_buffer(BUFFER_FILE_NAME)\n",
    "model.policy.save(POLICY_FILE_NAME)"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}