ledmands
Moved the config and watch scripts to the root directory. Split the watch script into two scripts: watch and evaluate.
ca16748
from stable_baselines3 import DQN | |
from stable_baselines3.common.evaluation import evaluate_policy | |
from stable_baselines3.common.monitor import Monitor | |
import gymnasium as gym | |
import argparse | |
# This script should have some options | |
# 1. Turn off the stochasticity as determined by the ALEv5 | |
# Even if deterministic is set to true in evaluate policy, the environment will ignore this 25% of the time | |
# To compensate for this, we can set the repeat action probability to 0 | |
# DONE | |
# 2. Print out the evaluation metrics or save to file | |
# 3. Render in the ALE or not | |
# DONE | |
# 4. Print the keyword args for the environment? I think this might be helpful... | |
# IN PROGRESS | |
# 5. Add option flag to accept file path for model | |
# DONE | |
# 6. Add option flag to accept number of episodes | |
# DONE | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-r", "--repeat_action_probability", help="repeat action probability, default 0.25", type=float, default=0.25) | |
parser.add_argument("-f", "--frameskip", help="frameskip, default 4", type=int, default=4) | |
# parser.add_argument("-o", "--observe", help="observe agent", action="store_const", const=True) | |
parser.add_argument("-p", "--print", help="print environment information", action="store_const", const=True) | |
parser.add_argument("-e", "--num_episodes", help="specify the number of episodes to evaluate, default 1", type=int, default=1) | |
parser.add_argument("-a", "--agent_filepath", help="file path to agent to watch, minus the .zip extension", type=str, required=True) | |
args = parser.parse_args() | |
MODEL_NAME = args.agent_filepath | |
loaded_model = DQN.load(MODEL_NAME) | |
# Toggle the render mode based on the -o flag | |
# if args.observe == True: | |
# mode = "human" | |
# else: | |
# mode = "rgb_array" | |
# Retrieve the environment | |
eval_env = Monitor(gym.make("ALE/Pacman-v5", | |
render_mode="human", | |
repeat_action_probability=args.repeat_action_probability, | |
frameskip=args.frameskip,)) | |
if args.print == True: | |
env_info = str(eval_env.spec).split(", ") | |
for item in env_info: | |
print(item) | |
# Evaluate the policy | |
# mean_rwd, std_rwd = | |
evaluate_policy(loaded_model.policy, eval_env, n_eval_episodes=args.num_episodes) | |
# print("eval episodes: ", args.num_episodes) | |
# print("mean rwd: ", mean_rwd) | |
# print("std rwd: ", std_rwd) |