from numpy import load import numpy as np import matplotlib.pyplot as plt # import matplotlib.axes filepath = "agents/dqn_v2-7/evaluations.npz" data = load(filepath) lst = data.files # data.files lists the keys that are available for data # print('ep_lengths: \n', data['ep_lengths']) # results and ep_lengths are 2d arrays, because each evaluation is 5 episodes long. # I want to plot the average of each evaluation. print(data["results"]) print() print(np.delete(np.sort(data["results"]), 0, 1)) # for i in range(len(data["results"])): # print(np.average(data["results"][i])) ''' # for each item in results, loop through the array and save the average avg_ep_result_arr = [] for eval in data['results']: result_sum = 0 for result in eval: result_sum = result_sum + result avg_ep_result = result_sum / len(eval) avg_ep_result_arr.append(avg_ep_result) avg_ep_len_arr = [] for eval in data['ep_lengths']: max_len = 0 y_limit = 0 ep_len_sum = 0 for ep_length in eval: ep_len_sum = ep_len_sum + ep_length if ep_length > max_len: max_len = ep_length if ep_length > y_limit and y_limit < max_len: y_limit = ep_length avg_ep_len = ep_len_sum / len(eval) avg_ep_len_arr.append(avg_ep_len) y_limit = y_limit * 1.9 x = plt.plot(data['timesteps'], avg_ep_result_arr) # plt.bar(data['timesteps'], avg_ep_len_arr, width=10000) y = plt.plot(data['timesteps'], avg_ep_len_arr) plt.ylim(top=y_limit) # plt.ylabel("Avg ep score") # lineObjects = plt.plot(x, y) plt.legend(["avg ep result", "avg ep length"]) plt.title("result and length over steps\nfilepath: " + filepath) plt.show() '''