File size: 1,065 Bytes
37ed490
 
 
 
 
 
 
 
 
 
763e002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29dc2b5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
language:
- en
library_name: ultralytics
pipeline_tag: object-detection
tags:
- yolo
- object-detect
- yolo11
- yolov11
---

## How to Use

To use this model in your project, follow the steps below:

### 1. Installation

Ensure you have the `ultralytics` library installed, which is used for YOLO models:

```bash
pip install ultralytics
```

### 2. Load the Model

You can load the model and perform detection on an image as follows:
```python
from ultralytics import YOLO

# Load the model
model = YOLO("./falldetect-11x.pt")

# Perform detection on an image
results = model("image.png")

# Display or process the results
results.show()  # This will display the image with detected objects
```

### 3. Model Inference
The results object contains bounding boxes, labels (e.g., numbers or operators), and confidence scores for each detected object.

Access them like this:

```python
for result in results:
    print(result.boxes)   # Bounding boxes
    print(result.names)   # Detected classes
    print(result.scores)  # Confidence scores
```

![](result.png)