legekka commited on
Commit
638ba7e
·
1 Parent(s): 4f9df78

Upload 3 files

Browse files

Add hungarian text cleaners.

Files changed (3) hide show
  1. text/__init__.py +56 -0
  2. text/cleaners.py +108 -0
  3. text/symbols.py +16 -0
text/__init__.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+ from text import cleaners
3
+ from text.symbols import symbols
4
+
5
+
6
+ # Mappings from symbol to numeric ID and vice versa:
7
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
8
+ _id_to_symbol = {i: s for i, s in enumerate(symbols)}
9
+
10
+
11
+ def text_to_sequence(text, cleaner_names):
12
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
13
+ Args:
14
+ text: string to convert to a sequence
15
+ cleaner_names: names of the cleaner functions to run the text through
16
+ Returns:
17
+ List of integers corresponding to the symbols in the text
18
+ '''
19
+ sequence = []
20
+
21
+ clean_text = _clean_text(text, cleaner_names)
22
+ for symbol in clean_text:
23
+ if symbol not in _symbol_to_id.keys():
24
+ continue
25
+ symbol_id = _symbol_to_id[symbol]
26
+ sequence += [symbol_id]
27
+ return sequence
28
+
29
+
30
+ def cleaned_text_to_sequence(cleaned_text):
31
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
32
+ Args:
33
+ text: string to convert to a sequence
34
+ Returns:
35
+ List of integers corresponding to the symbols in the text
36
+ '''
37
+ sequence = [_symbol_to_id[symbol] for symbol in cleaned_text if symbol in _symbol_to_id.keys()]
38
+ return sequence
39
+
40
+
41
+ def sequence_to_text(sequence):
42
+ '''Converts a sequence of IDs back to a string'''
43
+ result = ''
44
+ for symbol_id in sequence:
45
+ s = _id_to_symbol[symbol_id]
46
+ result += s
47
+ return result
48
+
49
+
50
+ def _clean_text(text, cleaner_names):
51
+ for name in cleaner_names:
52
+ cleaner = getattr(cleaners, name)
53
+ if not cleaner:
54
+ raise Exception('Unknown cleaner: %s' % name)
55
+ text = cleaner(text)
56
+ return text
text/cleaners.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+
3
+ '''
4
+ Cleaners are transformations that run over the input text at both training and eval time.
5
+
6
+ Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7
+ hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8
+ 1. "english_cleaners" for English text
9
+ 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10
+ the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11
+ 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12
+ the symbols in symbols.py to match your data).
13
+ '''
14
+
15
+ import re
16
+ from unidecode import unidecode
17
+ from phonemizer import phonemize
18
+
19
+
20
+ # Regular expression matching whitespace:
21
+ _whitespace_re = re.compile(r'\s+')
22
+
23
+ # List of (regular expression, replacement) pairs for abbreviations:
24
+ _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
25
+ ('mrs', 'misess'),
26
+ ('mr', 'mister'),
27
+ ('dr', 'doctor'),
28
+ ('st', 'saint'),
29
+ ('co', 'company'),
30
+ ('jr', 'junior'),
31
+ ('maj', 'major'),
32
+ ('gen', 'general'),
33
+ ('drs', 'doctors'),
34
+ ('rev', 'reverend'),
35
+ ('lt', 'lieutenant'),
36
+ ('hon', 'honorable'),
37
+ ('sgt', 'sergeant'),
38
+ ('capt', 'captain'),
39
+ ('esq', 'esquire'),
40
+ ('ltd', 'limited'),
41
+ ('col', 'colonel'),
42
+ ('ft', 'fort'),
43
+ ]]
44
+
45
+
46
+ def expand_abbreviations(text):
47
+ for regex, replacement in _abbreviations:
48
+ text = re.sub(regex, replacement, text)
49
+ return text
50
+
51
+
52
+ def expand_numbers(text):
53
+ return normalize_numbers(text)
54
+
55
+
56
+ def lowercase(text):
57
+ return text.lower()
58
+
59
+
60
+ def collapse_whitespace(text):
61
+ return re.sub(_whitespace_re, ' ', text)
62
+
63
+
64
+ def convert_to_ascii(text):
65
+ return unidecode(text)
66
+
67
+
68
+ def basic_cleaners(text):
69
+ '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
70
+ text = lowercase(text)
71
+ text = collapse_whitespace(text)
72
+ return text
73
+
74
+
75
+ def transliteration_cleaners(text):
76
+ '''Pipeline for non-English text that transliterates to ASCII.'''
77
+ text = convert_to_ascii(text)
78
+ text = lowercase(text)
79
+ text = collapse_whitespace(text)
80
+ return text
81
+
82
+
83
+ def english_cleaners(text):
84
+ '''Pipeline for English text, including abbreviation expansion.'''
85
+ text = convert_to_ascii(text)
86
+ text = lowercase(text)
87
+ text = expand_abbreviations(text)
88
+ phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
89
+ phonemes = collapse_whitespace(phonemes)
90
+ return phonemes
91
+
92
+
93
+ def english_cleaners2(text):
94
+ '''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
95
+ text = convert_to_ascii(text)
96
+ text = lowercase(text)
97
+ text = expand_abbreviations(text)
98
+ phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
99
+ phonemes = collapse_whitespace(phonemes)
100
+ return phonemes
101
+
102
+ def hungarian_cleaners(text):
103
+ '''Pipeline for Hungarian text, including abbreviation expansion. + punctuation + stress'''
104
+ text = lowercase(text)
105
+ text = expand_abbreviations(text)
106
+ phonemes = phonemize(text, language='hu', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
107
+ phonemes = collapse_whitespace(phonemes)
108
+ return phonemes
text/symbols.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+
3
+ '''
4
+ Defines the set of symbols used in text input to the model.
5
+ '''
6
+ _pad = '_'
7
+ _punctuation = ';:,.!?¡¿—…"«»“” '
8
+ _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
9
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
10
+
11
+
12
+ # Export all symbols:
13
+ symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
14
+
15
+ # Special symbol ids
16
+ SPACE_ID = symbols.index(" ")