Upload 3 files
Browse filesAdd hungarian text cleaners.
- text/__init__.py +56 -0
- text/cleaners.py +108 -0
- text/symbols.py +16 -0
text/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from text import cleaners
|
3 |
+
from text.symbols import symbols
|
4 |
+
|
5 |
+
|
6 |
+
# Mappings from symbol to numeric ID and vice versa:
|
7 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
8 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
9 |
+
|
10 |
+
|
11 |
+
def text_to_sequence(text, cleaner_names):
|
12 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
13 |
+
Args:
|
14 |
+
text: string to convert to a sequence
|
15 |
+
cleaner_names: names of the cleaner functions to run the text through
|
16 |
+
Returns:
|
17 |
+
List of integers corresponding to the symbols in the text
|
18 |
+
'''
|
19 |
+
sequence = []
|
20 |
+
|
21 |
+
clean_text = _clean_text(text, cleaner_names)
|
22 |
+
for symbol in clean_text:
|
23 |
+
if symbol not in _symbol_to_id.keys():
|
24 |
+
continue
|
25 |
+
symbol_id = _symbol_to_id[symbol]
|
26 |
+
sequence += [symbol_id]
|
27 |
+
return sequence
|
28 |
+
|
29 |
+
|
30 |
+
def cleaned_text_to_sequence(cleaned_text):
|
31 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
32 |
+
Args:
|
33 |
+
text: string to convert to a sequence
|
34 |
+
Returns:
|
35 |
+
List of integers corresponding to the symbols in the text
|
36 |
+
'''
|
37 |
+
sequence = [_symbol_to_id[symbol] for symbol in cleaned_text if symbol in _symbol_to_id.keys()]
|
38 |
+
return sequence
|
39 |
+
|
40 |
+
|
41 |
+
def sequence_to_text(sequence):
|
42 |
+
'''Converts a sequence of IDs back to a string'''
|
43 |
+
result = ''
|
44 |
+
for symbol_id in sequence:
|
45 |
+
s = _id_to_symbol[symbol_id]
|
46 |
+
result += s
|
47 |
+
return result
|
48 |
+
|
49 |
+
|
50 |
+
def _clean_text(text, cleaner_names):
|
51 |
+
for name in cleaner_names:
|
52 |
+
cleaner = getattr(cleaners, name)
|
53 |
+
if not cleaner:
|
54 |
+
raise Exception('Unknown cleaner: %s' % name)
|
55 |
+
text = cleaner(text)
|
56 |
+
return text
|
text/cleaners.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
|
3 |
+
'''
|
4 |
+
Cleaners are transformations that run over the input text at both training and eval time.
|
5 |
+
|
6 |
+
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
7 |
+
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
8 |
+
1. "english_cleaners" for English text
|
9 |
+
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
10 |
+
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
11 |
+
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
12 |
+
the symbols in symbols.py to match your data).
|
13 |
+
'''
|
14 |
+
|
15 |
+
import re
|
16 |
+
from unidecode import unidecode
|
17 |
+
from phonemizer import phonemize
|
18 |
+
|
19 |
+
|
20 |
+
# Regular expression matching whitespace:
|
21 |
+
_whitespace_re = re.compile(r'\s+')
|
22 |
+
|
23 |
+
# List of (regular expression, replacement) pairs for abbreviations:
|
24 |
+
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
|
25 |
+
('mrs', 'misess'),
|
26 |
+
('mr', 'mister'),
|
27 |
+
('dr', 'doctor'),
|
28 |
+
('st', 'saint'),
|
29 |
+
('co', 'company'),
|
30 |
+
('jr', 'junior'),
|
31 |
+
('maj', 'major'),
|
32 |
+
('gen', 'general'),
|
33 |
+
('drs', 'doctors'),
|
34 |
+
('rev', 'reverend'),
|
35 |
+
('lt', 'lieutenant'),
|
36 |
+
('hon', 'honorable'),
|
37 |
+
('sgt', 'sergeant'),
|
38 |
+
('capt', 'captain'),
|
39 |
+
('esq', 'esquire'),
|
40 |
+
('ltd', 'limited'),
|
41 |
+
('col', 'colonel'),
|
42 |
+
('ft', 'fort'),
|
43 |
+
]]
|
44 |
+
|
45 |
+
|
46 |
+
def expand_abbreviations(text):
|
47 |
+
for regex, replacement in _abbreviations:
|
48 |
+
text = re.sub(regex, replacement, text)
|
49 |
+
return text
|
50 |
+
|
51 |
+
|
52 |
+
def expand_numbers(text):
|
53 |
+
return normalize_numbers(text)
|
54 |
+
|
55 |
+
|
56 |
+
def lowercase(text):
|
57 |
+
return text.lower()
|
58 |
+
|
59 |
+
|
60 |
+
def collapse_whitespace(text):
|
61 |
+
return re.sub(_whitespace_re, ' ', text)
|
62 |
+
|
63 |
+
|
64 |
+
def convert_to_ascii(text):
|
65 |
+
return unidecode(text)
|
66 |
+
|
67 |
+
|
68 |
+
def basic_cleaners(text):
|
69 |
+
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
|
70 |
+
text = lowercase(text)
|
71 |
+
text = collapse_whitespace(text)
|
72 |
+
return text
|
73 |
+
|
74 |
+
|
75 |
+
def transliteration_cleaners(text):
|
76 |
+
'''Pipeline for non-English text that transliterates to ASCII.'''
|
77 |
+
text = convert_to_ascii(text)
|
78 |
+
text = lowercase(text)
|
79 |
+
text = collapse_whitespace(text)
|
80 |
+
return text
|
81 |
+
|
82 |
+
|
83 |
+
def english_cleaners(text):
|
84 |
+
'''Pipeline for English text, including abbreviation expansion.'''
|
85 |
+
text = convert_to_ascii(text)
|
86 |
+
text = lowercase(text)
|
87 |
+
text = expand_abbreviations(text)
|
88 |
+
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
|
89 |
+
phonemes = collapse_whitespace(phonemes)
|
90 |
+
return phonemes
|
91 |
+
|
92 |
+
|
93 |
+
def english_cleaners2(text):
|
94 |
+
'''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
|
95 |
+
text = convert_to_ascii(text)
|
96 |
+
text = lowercase(text)
|
97 |
+
text = expand_abbreviations(text)
|
98 |
+
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
|
99 |
+
phonemes = collapse_whitespace(phonemes)
|
100 |
+
return phonemes
|
101 |
+
|
102 |
+
def hungarian_cleaners(text):
|
103 |
+
'''Pipeline for Hungarian text, including abbreviation expansion. + punctuation + stress'''
|
104 |
+
text = lowercase(text)
|
105 |
+
text = expand_abbreviations(text)
|
106 |
+
phonemes = phonemize(text, language='hu', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
|
107 |
+
phonemes = collapse_whitespace(phonemes)
|
108 |
+
return phonemes
|
text/symbols.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
|
3 |
+
'''
|
4 |
+
Defines the set of symbols used in text input to the model.
|
5 |
+
'''
|
6 |
+
_pad = '_'
|
7 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
8 |
+
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
9 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
10 |
+
|
11 |
+
|
12 |
+
# Export all symbols:
|
13 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
14 |
+
|
15 |
+
# Special symbol ids
|
16 |
+
SPACE_ID = symbols.index(" ")
|