File size: 4,766 Bytes
8f4f943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
tags:
- generated_from_trainer
model-index:
- name: SmolLM-Ora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: /media/renfroe/llms/SmolLM-360M/
model_type: LlamaForCausalLM
tokenizer_type: GPT2Tokenizer
seed: 122887
load_in_8bit: false
load_in_4bit: false
strict: false
max_steps: 0
resume_from_checkpoint:
datasets:
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/Dynamic_Optimization_Methods_with_Applications_sqa_answers_only.json
type:
field_instruction: question
field_output: answer
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
- path: /home/renfroe/Dev/tinyllama-models/dataset/open_hermes_top_tech.json
type: sharegpt
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/hermes_prior_knowledge_question_expansion_with_answers.json
type:
field_instruction: question
field_output: answer
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/hermes_prior_knowledge_question_expansion_with_answers.json
type:
field_instruction: question
field_output: answer
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/or-farm_sharegpt.json
type: sharegpt
dataset_prepared_path:
val_set_size: 0.2
output_dir: ./SmolLM-Ora
auto_resume_from_checkpoints: false
sequence_len: 2048
sample_packing: true
chat_template: chatml
wandb_project: SmolLM-Ora
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 10
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: linear
weight_decay: 0.0000001
learning_rate: 0.0001
lr_scheduler_kwargs:
# num_cycles: 3
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: False
warmup_steps: 50
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed:
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|endoftext|>"
eos_token: "<|endoftext|>"
pad_token: "<|endoftext|>"
```
</details><br>
# SmolLM-Ora
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8298
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 122887
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0131 | 0.01 | 1 | 1.0419 |
| 0.9727 | 0.25 | 27 | 0.9962 |
| 0.953 | 0.5 | 54 | 0.9076 |
| 0.8494 | 0.75 | 81 | 0.8792 |
| 0.9297 | 1.0 | 108 | 0.8632 |
| 0.8801 | 1.22 | 135 | 0.8527 |
| 0.8133 | 1.47 | 162 | 0.8459 |
| 0.8342 | 1.72 | 189 | 0.8410 |
| 0.8973 | 1.97 | 216 | 0.8376 |
| 0.7731 | 2.19 | 243 | 0.8350 |
| 0.8207 | 2.44 | 270 | 0.8332 |
| 0.7963 | 2.69 | 297 | 0.8318 |
| 0.81 | 2.94 | 324 | 0.8309 |
| 0.8351 | 3.18 | 351 | 0.8302 |
| 0.8104 | 3.43 | 378 | 0.8299 |
| 0.9019 | 3.68 | 405 | 0.8298 |
| 0.7828 | 3.93 | 432 | 0.8298 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.0
|