File size: 4,766 Bytes
8f4f943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
tags:
- generated_from_trainer
model-index:
- name: SmolLM-Ora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: /media/renfroe/llms/SmolLM-360M/

model_type: LlamaForCausalLM
tokenizer_type: GPT2Tokenizer
seed: 122887 
load_in_8bit: false
load_in_4bit: false
strict: false

max_steps: 0
resume_from_checkpoint: 
datasets:
  - path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/Dynamic_Optimization_Methods_with_Applications_sqa_answers_only.json
    type:
      field_instruction: question
      field_output: answer
      format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
      no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
  - path: /home/renfroe/Dev/tinyllama-models/dataset/open_hermes_top_tech.json
    type: sharegpt
  - path:  /home/renfroe/Desktop/sqa_tiny-llama_dataset/hermes_prior_knowledge_question_expansion_with_answers.json
    type:
      field_instruction: question
      field_output: answer
      format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
      no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
  - path:  /home/renfroe/Desktop/sqa_tiny-llama_dataset/hermes_prior_knowledge_question_expansion_with_answers.json
    type:
      field_instruction: question
      field_output: answer
      format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
      no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
  - path:  /home/renfroe/Desktop/sqa_tiny-llama_dataset/or-farm_sharegpt.json
    type: sharegpt
  


dataset_prepared_path:
val_set_size: 0.2
output_dir: ./SmolLM-Ora
auto_resume_from_checkpoints: false

sequence_len: 2048
sample_packing: true
chat_template: chatml

wandb_project: SmolLM-Ora
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 10
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: linear
weight_decay: 0.0000001
learning_rate: 0.0001
lr_scheduler_kwargs:
  #  num_cycles: 3 

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

eval_sample_packing: False

warmup_steps: 50
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed:

fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|endoftext|>"
  eos_token: "<|endoftext|>"
  pad_token: "<|endoftext|>"
```

</details><br>

# SmolLM-Ora

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8298

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 122887
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0131        | 0.01  | 1    | 1.0419          |
| 0.9727        | 0.25  | 27   | 0.9962          |
| 0.953         | 0.5   | 54   | 0.9076          |
| 0.8494        | 0.75  | 81   | 0.8792          |
| 0.9297        | 1.0   | 108  | 0.8632          |
| 0.8801        | 1.22  | 135  | 0.8527          |
| 0.8133        | 1.47  | 162  | 0.8459          |
| 0.8342        | 1.72  | 189  | 0.8410          |
| 0.8973        | 1.97  | 216  | 0.8376          |
| 0.7731        | 2.19  | 243  | 0.8350          |
| 0.8207        | 2.44  | 270  | 0.8332          |
| 0.7963        | 2.69  | 297  | 0.8318          |
| 0.81          | 2.94  | 324  | 0.8309          |
| 0.8351        | 3.18  | 351  | 0.8302          |
| 0.8104        | 3.43  | 378  | 0.8299          |
| 0.9019        | 3.68  | 405  | 0.8298          |
| 0.7828        | 3.93  | 432  | 0.8298          |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.0