--- license: apache-2.0 base_model: leofltt/distilhubert-finetuned-gtzan-v3 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-v3-b results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.99 --- # distilhubert-finetuned-gtzan-v3-b This model is a fine-tuned version of [leofltt/distilhubert-finetuned-gtzan-v3](https://huggingface.co/leofltt/distilhubert-finetuned-gtzan-v3) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0633 - Accuracy: 0.99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2092 | 1.0 | 113 | 0.1285 | 0.97 | | 0.1334 | 2.0 | 226 | 0.0574 | 0.99 | | 0.0138 | 3.0 | 339 | 0.0633 | 0.99 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2